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Entropy numbers and moduli

Definition
The k -th entropy number εk(T ) of T ∈ L(X ,Y ) is defined by

εk(T ) := inf
{
ε > 0 : T (UX ) ⊂

k⋃
i=1

{yi + εUY } , yi ∈ Y

}

I The entropy moduli

gs(T ) := inf
k∈N

k1/(2s)εk(T ) , s ∈ (0,∞)

I Multiplicativity:

gs(RS) 6 gs(R) gs(S) for S ∈ L(X ,Z ),R ∈ L(Z ,Y )
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Carl -Triebel’s inequality

I Let
{
λn(T )

}∞
n=1 be an eigenvalue sequence of T ∈ K (X ) on

a complex Banach space X .

I [Carl -Triebel, 1980]( n∏
i=1

|λi (T )|
)1/n

6 gn(T ) = inf
k∈N

k1/(2n)εk(T )
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a complex Banach space X .

I [Carl -Triebel, 1980], [Makai -Zemánek, 1982]( n∏
i=1

|λi (T )|
)1/n

6 gn(T ) = inf
k∈N

k1/(2n)εk(T )



A classical Riesz theory

I The essential spectral radius is given by

ress(T ) := sup
λ∈σess(T )

|λ| = lim
m→∞

‖Tm‖1/mess

I T is a Riesz operator ⇐⇒ ress(T ) = 0. Every power compact
operator is a Riesz operator.

I The Riesz part of the spectrum

Λ(T ) := {λ ∈ σ(T ) : |λ| > ress(T ) }

is at most countable and consists of isolated eigenvalues of
finite algebraic multiplicity.
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Eigenvalue sequence

I The Riesz part of the spectrum

Λ(T ) := {λ ∈ σ(T ) : |λ| > ress(T ) }

We assign an eigenvalue sequence {λn(T )}∞n=1 for an operator
T ∈ L(X ) from the elements of the set Λ(T ) ∪ {ress(T )} as
follows:

I The eigenvalues are arranged in an order of non-increasing
absolute values.

I Every eigenvalue λ ∈ Λ(T ) is counted according to its
algebraic multiplicity.

I If T possesses less than n eigenvalues λ with |λ| > ress(T ), we
let

λn(T ) = λn+1(T ) = . . . = ress(T )



Banach couple

I We call ~A := (A0,A1) a Banach couple if both A0 and A1 are
Banach spaces such that

A0, A1 ↪→ X

For a given Banach couple ~A, we define spaces
I intersection A0 ∩ A1 with the norm

‖a‖A0∩A1
= max

{
‖a‖A0

, ‖a‖A1

}
I sum A0 + A1 with the norm

‖a‖A0+A1
= inf

a=a0+a1

{
‖a0‖A0

+ ‖a1‖A1

}
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Interpolation functor

I By T : ~A→ ~B we denote an operator T : A0 + A1 → B0 + B1,
such that

T |A0 ∈ L(A0,B0) and T |A1 ∈ L(A1,B1)

Definition
By an interpolation functor we mean a mapping F : ~B → B

I A0 ∩ A1 ⊂ F(~A) ⊂ A0 + A1 for any ~A ∈ ~B

I T
(
F(~A)

)
⊂ F(~B) for any ~A, ~B ∈ ~B and T : ~A→ ~B
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Interpolation functor of exponential type of θ

For all interpolation functors F

‖T‖F(~A)→F(~B)
6 C max

{
‖T‖A0→B0

, ‖T‖A1→B1

}

If in addition there exists θ ∈ (0, 1) such that

‖T‖F(~A)→F(~B)
6 C ‖T‖1−θA0→B0

‖T‖θA1→B1
,

then F is called of exponential type of θ.

I The real F(·) = (·)θ,q and complex F(·) = [·]θ interpolation
functors are of exponential type of θ.
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Recollect...

I The k -th entropy number εk(T ) of T ∈ L(X ,Y )

εk(T ) := inf
{
ε > 0 : T (UX ) ⊂

k⋃
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}
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One-sided interpolation results

Let ~A = (A0,A1) and ~B = (B0,B1) be Banach couples and θ ∈ (0, 1).

I If X belongs to the class CK (θ; ~A) and B := B0 = B1, then

gs(T : X → B) 6 C gs(1−θ)(T : A0 → B)1−θ gsθ(T : A1 → B)θ .

I If A := A0 = A1 and Y belongs to the class CJ(θ; ~B), then

gs(T : A→ Y ) 6 C gs(1−θ)(T : A→ B0)1−θ gsθ(T : A→ B1)θ .

I The real F(·) = (·)θ,q and complex F(·) = [·]θ interpolation
functors are members of CK (θ; ·) and CJ(θ; ·).
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Two-sided interpolation of entropy moduli ?

A delicate problem

Let F be an interpolation functor of exponential type of θ.
Does there exist a constant C such that for any T : ~A→ ~B

gs
(
T : F(~A)→ F(~B)

)
6 C gs(T : A0 → B0)1−θ gs(T : A1 → B1)θ

?

I [Edmunds-Netrusov, 2011]
The entropy numbers do not interpolate well at least in the
situation of the real interpolation functor F(·) = (·)θ,q .

I [Mastyło-Szwedek]
We transfer this example to entropy moduli.
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Two-sided interpolation of entropy moduli ?

A delicate problem

Let F be an interpolation functor of exponential type of θ.
There cannot be any constant C such that for all T : ~A→ ~B

gs
(
T : F(~A)→ F(~B)

)
6 C gs(T : A0 → B0)1−θ gs(T : A1 → B1)θ

!

I [Edmunds-Netrusov, 2011]
The entropy numbers do not interpolate well at least in the
situation of the real interpolation functor F(·) = (·)θ,q .

I [Mastyło-Szwedek]
We transfer this example to entropy moduli.



Two-sided interpolation of entropy moduli

Interpolation of entropy moduli between Hilbert spaces

Theorem [Szwedek, 2015]
There exists a constant C > 0, such that

I for all couples ~H = (H0,H1) and ~K = (K0,K1) of complex
Hilbert spaces, and

I for every operator T ∈ L( ~H, ~K ) and every θ ∈ (0, 1)

gn
(
T : [ ~H]θ → [ ~K ]θ

)
6 C gn(T : H0 → K0)1−θ gn(T : H1 → K1)θ .



Hilbert spaces, approximation numbers and eigenvalues

I The s-numbers of operators between Hilbert spaces coincide.
I Approximation numbers of T ∈ L(H,K )

an(T ) = inf{‖T − TP‖ : P ∈ L(H) orthog. proj. with rankP < n }

I N ∈ L(H) is normal if N∗N = NN∗. [Szwedek, 2015] If N is
normal, then

|λn(N)| = an(N) .

I |T | := D such that T ∗T = D2 where T ∗ : K → H.

λn(|T |) = an(|T |) =an(T : H → K ) = an(T ∗ : K → H) .
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Hilbert spaces, approximation numbers and entropy moduli

Definition
The n -th entropy number εn(T ) of T ∈ L(H,K ) is defined by

εn(T ) := inf
{
ε > 0 : T (UH) ⊂

n⋃
i=1

{yi + εUK} , yi ∈ K

}

I The n -th entropy moduli

gn(T ) := inf
k∈N

k1/(2n)εk(T )

I ( n∏
i=1

ai (T )
)1/n � gn(T )



Geometric interpolation between Hilbert spaces (1)

Let ~H = (H0,H1) be a regular couple of Hilbert spaces.
I We define interpolation spaces using powers of a positive

operator [Donoghue, 1967], [McCarthy, 1992]

I The inner product for H1 is a Hermitian form on H0 ∩ H1, so
there exists a densely defined, positive injective operator A on
H0 satisfying〈

ξ, η
〉
1 =

〈
A1/2ξ,A1/2η

〉
0 for all ξ, η ∈ H0 ∩ H1.

I H0 ∩ H1 is contained in both DomA1/2 and RanA1/2.
I A is bounded if and only if H0 is embedded in H1.
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Geometric interpolation between Hilbert spaces (2)

Let ~H = (H0,H1) be a regular couple of Hilbert spaces.

Definition of Hθ
For fixed θ ∈ (0, 1), we define a new inner product on H0 ∩ H1 by〈

ξ, η
〉
θ

=
〈
Aθ/2ξ,Aθ/2η

〉
0.

I H0 ∩ H1 is contained in both DomAθ/2 and RanAθ/2.
I Hθ - the closure of H0 ∩ H1, with respect to the norm given by

the inner product 〈·, ·〉θ.
I

Hθ ∼= [H0,H1]θ.
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Unitary equivalence of entropy moduli

Lemma - “unitary equivalence” [Szwedek, 2015]
Let ~H and ~K be regular couples of Hilbert spaces. Assume that

I A is a positive operator on H0 that generate the H1 inner
product, and

I B is a positive operator on K0 that generate the K1 inner
product,

I T ∈ L( ~H, ~K ) and θ ∈ [0, 1].
Then

gn(T : Hθ → Kθ) = gn
(
Bθ/2TA−θ/2 : H0 → K0

)



Interpolation of entropy moduli between Hilbert spaces

Theorem [Szwedek, 2015] (reduced form)
There exists a constant C > 0, such that

I for all couples ~H = (H0,H1) and ~K = (K0,K1) of complex
Hilbert spaces, and

I for every operator T ∈ L( ~H, ~K ) and every θ ∈ (0, 1)

An

(
T : Hθ → Kθ

)
6 C An

(
T : H0 → K0

)1−θ
An

(
T : H1 → K1

)θ
,

where An(T ) denotes
( n∏
i=1

ai (T )
)1/n � gn(T ).



Sketch of the proof of the main theorem (1)

I “unitary equivalence” of entropy moduli

Ak(T : Hθ → Kθ) � Ak

(
Rθ : H0 → K0

)
An(T ) :=

( n∏
i=1

ai (T )
)1/n and Rθ := Bθ/2TA−θ/2 for θ ∈ (0, 1)

I θ = 1/2

Ak

(
R1/2

)
=

( n∏
i=1

ai
(
R1/2

))1/n

=

( n∏
i=1

∣∣λi(∣∣R1/2
∣∣)∣∣)1/n

=

( n∏
i=1

∣∣∣λi(∣∣R1/2
∣∣2)∣∣∣)1/2n

=

( n∏
i=1

∣∣∣λi(R∗1/2R1/2

)∣∣∣)1/2n

=

( n∏
i=1

∣∣∣λi(A1/4R∗1/2R1/2A
−1/4

)∣∣∣)1/2n



Sketch of the proof of the main theorem (2)

I Rθ := Bθ/2TA−θ/2 and R∗θ := A−θ/2T ∗Bθ/2

Ak

(
R1/2

)
=

( n∏
i=1

∣∣∣λi(∣∣R1/2
∣∣2)∣∣∣)1/2n

=

( n∏
i=1

∣∣∣λi(R∗1/2R1/2

)∣∣∣)1/2n

=

( n∏
i=1

∣∣∣λi(A1/4R∗1/2R1/2A
−1/4

)∣∣∣)1/2n

6 gk
(
A1/4R∗1/2R1/2A

−1/4)1/2
= gk

(
T ∗B1/2TA−1/2)1/2 6 gk

(
T ∗
)1/2

gk
(
B1/2TA−1/2)1/2 = gk

(
T ∗B1/2TA−1/2)1/2

6 gk
(
T ∗
)1/2

gk
(
B1/2TA−1/2)1/2

= gk
(
T
)1/2

gk
(
R1
)1/2 � Ak(R0)1/2 Ak(R1)1/2



Sketch of the proof of the main theorem (3)

I θ = 1/2:

Ak

(
R1/2

)
6 C Ak(R0)1/2 Ak(R1)1/2

I θ = 1/4: interpolating between R0 and R1/2 gives

Ak

(
R1/4

)
6 C 3/2Ak(R0)1/2 Ak

(
R1/2

)1/2
I θ = 3/4: interpolating between R1/2 and R1 gives

Ak

(
R3/4

)
6 C 3/2Ak

(
R1/2

)1/2
Ak(R1)1/2

I Theorem holds for any dyadic rational in [0, 1]

Ak(Rθ : H0 → K0) 6 C 2Ak(R0 : H0 → K0)1−θ Ak(R1 : H0 → K0)θ


