
Banach spaces with prescribed ultrapowers

Yves Raynaud

Institut de Mathématiques de
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1. Preliminaries: ultraproducts 1.1 Basic definitions

Basic definitions

Definition

Let (Ei )i∈I be a family of Banach spaces indexed by I and U be an
utrafilter over the index set I . The ultraproduct

∏
i ,U Ei (or simply

∏
U Xi )

is defined as the quotient Banach space

`∞(Ei ; i ∈ I )/c0,U (Ei ; i ∈ I )

with `∞(Ei ; i ∈ I )= space of bounded families in
∏

i∈I Ei with sup-norm
and c0,U (Ei ; i ∈ I )= the subspace of families U-converging to zero.

If Ei = E for all i ∈ I then we speak of an ultrapower of E , denoted by EU .

Notation

If (xi ) ∈ `∞(Ei ; i ∈ I ) denote by [xi ]U the element it defines in
∏

i ,U Ei .
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1. Preliminaries: ultraproducts 1.1 Basic definitions

Some more basics

A Recall

Recall that the U-limit ` of a family of points (ti ) in a topological space
T , if it exists, is characterized by

∀V neighborhood of `, {i ∈ I : ti ∈ V } ∈ U
and denoted by limi ,U ti . It always exists if the space T is compact.

A formula for the ultraproduct norm

‖[xi ]U‖ = limi ,U ‖xi‖

Ultraproducts of operators

If Ti : Xi → YI is a uniformly bounded family of linear operators, one may
define unambiguously T̃ :

∏
i ,U Xi →

∏
i ,U Yi by T̃ [xi ]U = [Tixi ]U .

Notation: T =
∏

U Ti or TU when Ti = T for all i .
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1. Preliminaries: ultraproducts 1.2 Embeddings

Canonical embeddings

The diagonal embedding

For X a Banach space, U an ultrafilter, set DX x = [x ]U for x ∈ X . This
defines a linear isometric embedding DX : X → XU .

An ultraproduct version

Let X a Banach space and (Ei )i∈I an upwards directed net of closed linear
subspaces of X (∀i , j ∃k such that Ek ⊃ Ei + Ej) with dense union E0.
Let’s call adapted an ultrafilter U on I if U 3 {j ∈ I : Ej ⊃ Ei} for all i .
Denote by ui be the inclusion Ei ↪→X . For each adapted U there is a
unique map D : X →

∏
i ,U Ei such that (

∏
i ,U ui ) ◦ D = DX , and D is an

isometric linear embedding.

Let ui ,j be the inclusion Ei ↪→Ej , if Ei ⊂ Ej , ui ,j = 0 if not. Then
Di : Ei ↪→

∏
j ,U Ej by Dix = [ui ,j(x)]j ,U is a linear isometric embedding, the

Di are compatible and define together D0 : E0 ↪→
∏

j ,U Ei , that extends by
density to the whole of X . Unicity of D because

∏
i ,U ui is isometric.
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1. Preliminaries: ultraproducts 1.3 Normed structures

Lattice ultraproducts

These concepts extend easily to other categories of normed structures, i.
e. Banach spaces with additional structures: Banach lattices, modulared
Banach spaces, Banach algebras, operator spaces...

In this talk, beside the category of Banach spaces we shall consider only
that of Banach lattices.

If (Ei ) = Banach lattices, then `∞(Ei ; i ∈ I ) is also a Banach lattice and
c0,U (Ei ; i ∈ I ) is a closed order ideal of this Banach lattice.
Thus the quotient

∏
U Ei has a Banach lattice structure too.

The inf operation on the ultraproduct
∏

U Ei is given by

[xi ]U ∧ [yi ]U = [xi ∧ yi ]U
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1. Preliminaries: ultraproducts 1.4 Examples

Classes which are closed under ultraproducts

The following classes of normed structures are known to be closed under
ultraproducts:

C (K ) spaces (as Banach lattices or as Banach algebras)

Lp-spaces, 1 ≤ p < ∞ (Banach lattices) [Krivine,Henson-Moore]

Nakano spaces Lp(·) (or Lebesgue spaces with variable exponents).
The class NK of Nakano spaces with exponent function taking values
in a given compact set K ⊂ [1,∞) is closed by ultraproducts. (as
Banach lattices)

Preduals of von Neumann algebras. [U. Groh]

General non-commutative Lp-spaces, 1 ≤ p < ∞ (Operator spaces)
[YR].
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1. Preliminaries: ultraproducts 1.4 Examples

Classes which are not closed under ultraproducts, but...

The following classes of normed structures are not even closed under
ultrapowers, but a suitable enlargement is closed under ultraproducts:

Lp + Lq-spaces, 1 ≤ p 6= q < ∞; but the class of “generalized sums”
Lp(Ω1) + Lq(Ω2) (Ω1, Ω2 subsets of the same measure space) is
closed under ultraproducts. [YR]

Orlicz spaces. But the class of Musielak-Orlicz spaces (generalized
Orlicz spaces with variable Orlicz function) satisyfing an prescribed
uniform ∆2-estimate is closed under ultraproducts.
[Dacunha-Castelle]

Lp(Lq)-spaces. But the class BLpLq of Banach lattices isomorphic to
a band of some Lp(Lq)-space, 1 ≤ p 6= q < ∞ is closed under
ultraproducts. [M. Levy, Y.R]
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2. Finite representability, ultrapowers, and logic 2.1 Finite representability

The classical use of ultraproducts in BSG

Roughly speaking, using ultrapowers or ultraproducts allows to pass from
local and approximate properties to global and exact ones. This is
illustrated by the well known relationship to finite representability.

Definition

A normed vector space X is finitely representable into a normed vector
space Y if for every finite dimensional subspace E of X and every ε > 0
there is a linear map T : E → Y with

∀x ∈ E , (1 + ε)−1‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖
(we say that T is an (1 + ε)-embedding of E into Y )
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2. Finite representability, ultrapowers, and logic 2.1 Finite representability

Fact

Every ultrapower XU of a normed space X is finitely representable in X .

Indeed given E ⊂ XU a subspace with a basis (e1, e2, . . . en)
If ek = [ek,i ]U , let Ti : E → X be the linear map such that Tiek = ek,i .
Clearly ‖Tix‖X −→

i ,U
‖x‖E for each x ∈ E ,

Assuming ‖ek,i‖ = ‖ek‖ ∀k, i then

sup
i
‖Ti‖ ≤ K = sup{

∑
|λk |‖ek‖ | ‖

∑
k

λkek‖ = 1}

By Ascoli it results that the convergence ‖Tix‖X −→
i ,U

‖x‖E is uniform on

the unit ball of E , and the fact follows.
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2. Finite representability, ultrapowers, and logic 2.1 Finite representability

Fact

A normed linear space Y is finitely representable into X iff it is linearly
isometric to a subspace of an ultrapower of X .

Proof: Sufficiency is clear by XU f.r. X . Let’s prove necessity:

For every E ⊂ Y of dimension dE let TE : E → X be an (1 + εE )-linear
embedding, with εE = 1/dE .
Embed Y isometrically in an ultraproduct of a family E = (Ei ) of its fin.
dim. subspaces, and use the embeddings TEi

to embed this ultraproduct
in the corresponding ultrapower of X :

Y ↪→
∏

i ,U
Ei ↪→̃

T
XU

where T̃ ([xi ]U ) = [TEi
xi ]U . Note that T̃ is an (1 + ε)-embedding with

ε = limi ,U εEi
.

if dim Y = ∞ it holds that dim Ei −→
i ,U

+∞, so ε = 0 and T̃ is an isometry.

If dim Y < ∞ for each n find Tn : Y → X an (1+1/n)-embedding, choose
a free ultrafilter U over N and then embed Y in XU by Tx = [Tnx ]U .

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 11 / 33
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2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

The language of Banach spaces

In Logic a language is a set of formulas build in a precise way. For Banach
space theory we define successively:

Atomic formulas:

”‖
∑n

i=1 λixi‖ ≤ r ” or ”‖
∑n

i=1 λixi‖ ≥ r ”
where x1, . . . xn are (vector) variables and λ1 . . . λn, r are (scalar)
constants.

Basic formulas (quantifier free positive formulas)

Are build recursively from atomic formulas using the connective ∧
(“AND”) and ∨ (“OR”), but never ¬ (“NOT”).

General formulas (prenex form)

Obtained by bounding certain variables with “bounded quantifiers”:
∀rx φ(x , x1, . . . xn) is true if for all x with ‖x‖ ≤ r , φ(x , x1, . . . xn) is true
∃rx φ(x , x1, . . . xn) is true if for some x with ‖x‖ ≤ r , φ(x , x1, . . . xn) is true
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2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

A logic interpretation of finite representability

A sentence is a formula which has no free variable. A sentence is universal
if it contains only universal quantifiers (∀).
A weakening of a formula φ is a formula obtained by relaxing all the
conditions appearing in φ:

‖ . . . ‖ ≤ r and ∃r become ‖ . . . ‖ ≤ r ′ and ∃r ′ with r ′ > r

‖ . . . ‖ ≥ r and ∀r become ‖ . . . ‖ ≥ r ′ and ∀r ′ with r ′ < r

We say that a sentence is approximately true in X if all its weakenings are
true in X .

Fact

Let X , Y be normed spaces. Then the following assertions are equivalent:

Y is finitely representable in X

Every universal sentence which is true in X is true in Y

Every universal sentence which is true in X is approximately true in Y

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 13 / 33



2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

A logic interpretation of finite representability

A sentence is a formula which has no free variable. A sentence is universal
if it contains only universal quantifiers (∀).
A weakening of a formula φ is a formula obtained by relaxing all the
conditions appearing in φ:

‖ . . . ‖ ≤ r and ∃r become ‖ . . . ‖ ≤ r ′ and ∃r ′ with r ′ > r

‖ . . . ‖ ≥ r and ∀r become ‖ . . . ‖ ≥ r ′ and ∀r ′ with r ′ < r

We say that a sentence is approximately true in X if all its weakenings are
true in X .

Fact

Let X , Y be normed spaces. Then the following assertions are equivalent:

Y is finitely representable in X

Every universal sentence which is true in X is true in Y

Every universal sentence which is true in X is approximately true in Y

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 13 / 33



2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

A logic interpretation of finite representability

A sentence is a formula which has no free variable. A sentence is universal
if it contains only universal quantifiers (∀).
A weakening of a formula φ is a formula obtained by relaxing all the
conditions appearing in φ:

‖ . . . ‖ ≤ r and ∃r become ‖ . . . ‖ ≤ r ′ and ∃r ′ with r ′ > r

‖ . . . ‖ ≥ r and ∀r become ‖ . . . ‖ ≥ r ′ and ∀r ′ with r ′ < r

We say that a sentence is approximately true in X if all its weakenings are
true in X .

Fact

Let X , Y be normed spaces. Then the following assertions are equivalent:

Y is finitely representable in X

Every universal sentence which is true in X is true in Y

Every universal sentence which is true in X is approximately true in Y

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 13 / 33



2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

A logic interpretation of finite representability

A sentence is a formula which has no free variable. A sentence is universal
if it contains only universal quantifiers (∀).
A weakening of a formula φ is a formula obtained by relaxing all the
conditions appearing in φ:

‖ . . . ‖ ≤ r and ∃r become ‖ . . . ‖ ≤ r ′ and ∃r ′ with r ′ > r

‖ . . . ‖ ≥ r and ∀r become ‖ . . . ‖ ≥ r ′ and ∀r ′ with r ′ < r

We say that a sentence is approximately true in X if all its weakenings are
true in X .

Fact

Let X , Y be normed spaces. Then the following assertions are equivalent:

Y is finitely representable in X

Every universal sentence which is true in X is true in Y

Every universal sentence which is true in X is approximately true in Y

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 13 / 33



2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

Ties between a normed space and its ultrapowers

It results from the precedings that a normed space and its ultrapowers
satisfy the same universal sentences.However it is known since a long time
that their relationship is far more intimate:

Theorem (Loś; Henson)

Let X be a normed space and XU an ultrapower of X .

every sentence which is true in X is true in XU

every sentence which is true in XU is approximately true in X
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2. Finite representability, ultrapowers, and logic 2.2 A touch of Logic

Elementary equivalence

Definition

Two normed spaces X and Y are said to be elementarily equivalent if they
have linearly isometric ultrapowers XU and YV . The class of spaces Y that
are elementary equivalent to X is called the elementary class of X .

Clearly if X and Y are elementarily equivalent they share the same set of
approximately true sentences. The converse is true, and this is an hard
theorem of Shelah (Henson for the normed spaces version):

Theorem (Shelah; Henson)

Let X ,Y be normed spaces. The following assertions are equivalent:

every sentence which is true in X is approximately true in Y

every sentence which is true in Y is approximately true in X

For some ultrafilter U , XU and YU are linearly isometric

X and Y are elementarily equivalent.
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3. Ultraroots 3.1 The ultraroot problem

The ultraroot problem

If Z is linearly isometric to some ultrapower of X we call X
an ultraroot of Z .
In this section we address the general loose question:

given a class C of normed spaces, can we identify the class Cur of
normed spaces X which are ultraroot of some member of C?

Note that if C is the class of all the ultrapowers of Y then Cur is the
elementary class of Y .
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3. Ultraroots 3.2 the Banach space case

Ultraroots: the Banach space case

Within the list of classes of Banach spaces which are closed under
ultraproduct, very few are classically known to be closed under ultraroots :

Lp-spaces, 1 ≤ p < ∞ (Henson)

L1-preduals, and various subclasses (in particular, C (K ) spaces)
(Heinrich, 1981)

p-direct sums of spaces Lp(Hi ), 1 < p < ∞, Hi Hilbert (Y.R., 2004)
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3. Ultraroots 3.2 the Banach space case

Tools for showing closure under ultraroots

Tools for showing a class to be closed under ultraroots are quite scarce:

the class is closed under subspaces
Indeed a Banach space embeds canonically into any of its ultrapowers.
Example: Hilbert spaces

the class is closed under contractive projections (for a class of
reflexive Banach spaces).
Indeed a reflexive Banach spaces is 1-complemented in any of its
ultrapowers.
Examples:

I Lp-spaces, 1 < p < ∞.
I p-direct sums of spaces Lp(Hi ), 1 < p < ∞, Hi Hilbert

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 19 / 33



3. Ultraroots 3.2 the Banach space case

Tools for showing closure under ultraroots

Tools for showing a class to be closed under ultraroots are quite scarce:

the class is closed under subspaces
Indeed a Banach space embeds canonically into any of its ultrapowers.
Example: Hilbert spaces

the class is closed under contractive projections (for a class of
reflexive Banach spaces).
Indeed a reflexive Banach spaces is 1-complemented in any of its
ultrapowers.
Examples:

I Lp-spaces, 1 < p < ∞.
I p-direct sums of spaces Lp(Hi ), 1 < p < ∞, Hi Hilbert

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 19 / 33



3. Ultraroots 3.2 the Banach space case

Tools for showing closure under ultraroots

Tools for showing a class to be closed under ultraroots are quite scarce:

the class is closed under subspaces
Indeed a Banach space embeds canonically into any of its ultrapowers.
Example: Hilbert spaces

the class is closed under contractive projections (for a class of
reflexive Banach spaces).
Indeed a reflexive Banach spaces is 1-complemented in any of its
ultrapowers.
Examples:

I Lp-spaces, 1 < p < ∞.
I p-direct sums of spaces Lp(Hi ), 1 < p < ∞, Hi Hilbert

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 19 / 33



3. Ultraroots 3.2 the Banach space case

Tools for showing closure under ultraroots

Tools for showing a class to be closed under ultraroots are quite scarce:

the class is closed under subspaces
Indeed a Banach space embeds canonically into any of its ultrapowers.
Example: Hilbert spaces

the class is closed under contractive projections (for a class of
reflexive Banach spaces).
Indeed a reflexive Banach spaces is 1-complemented in any of its
ultrapowers.
Examples:

I Lp-spaces, 1 < p < ∞.
I p-direct sums of spaces Lp(Hi ), 1 < p < ∞, Hi Hilbert

Yves Raynaud (IMJ-PRG) Banach spaces with prescribed ultrapowers 19 / 33



3. Ultraroots 3.2 the Banach space case

the dual class is closed by ultraroots (class of reflexive Banach
spaces).
Indeed if XU is a reflexive Banach space then (XU )∗ = (X ∗)U .

the class is a script-class
Given a collection C0 of finite dimensional normed vector spaces, a
normed vector space X is script-C0 iff for every finite dimensional
subspace E of X and every ε > 0, there exists a finite-dimensional
subspace F containing E and (1 + ε)-isomorphic to a member of C0.
Example: Lp-spaces, 1 ≤ p < ∞; L1-preduals.
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3. Ultraroots 3.3 the Banach lattice case

Ultraroots: the Banach lattice case

I In the category of Banach lattices we have also a notion of
ultraproduct.

I Consequently we have also notions of ultraroots, elementary
equivalence, elementary classes, etc.

I The ultraroot problem appears empirically easier in the Banach lattice
setting.

I In certain case the results obtained for the ultraroot problem in
Banach lattice category transfer to that in Banach lattice category.
This leads to new results in the Banach lattice setting.
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3. Ultraroots 3.3 the Banach lattice case

Ultraroots in Banach lattice sense: examples

The following classes of Banach lattices are closed under ultraroots (in
Banach lattice sense)

Lp-spaces, 1 ≤ p < ∞ (easy), C (K ) spaces.

The class MOK of Musielak-Orlicz spaces, satisfying an uniform
∆2-estimate with constant K (easy).

The class NK of Nakano spaces, K ⊂ [1,∞) (Poitevin, 2006)

BLpLq-spaces, 1 ≤ p, q < ∞ (C.W. Henson, Y. R., 2007.)
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3. Ultraroots 3.4 A transfer theorem

A transfer theorem

Definition

A Banach lattice X has property DPIU iff every linear isometry from X
into any of its ultrapowers preserves disjointness.

Examples

Lp-spaces, 1 ≤ p < ∞, p 6= 2

X is the r -convexification of some Banach lattice with uniformly
monotone norm, for some r > 2.

X = Lp(Lq), q > 2 or 2 6= q < p.

Theorem

If a Banach space X has an ultrapower XU linearly isometric to a Banach
lattice Y with DPIU, then X itself is linearly isometric to a Banach lattice
E such that EU is lattice-isomorphic to Y .
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4. Back to elementary equivalence

1 1. Preliminaries: ultraproducts
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4 4. Back to elementary equivalence
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4. Back to elementary equivalence 4.1: the elementary class of Lp(0, 1)

An example: the elementary class of Lp(0, 1)
Analysis

Since the class of Lp-spaces is closed under ultrapowers and
ultraroots, the elementary class of Lp(0, 1) contains only Lp-spaces.

Since the measure space ([0, 1],Lebesgue) has no atom, the Banach
lattice Lp(0, 1) has no atom as well. (An element e of a Banach
lattice is an atom if |x | ≤ e =⇒ ∃ρ, x = ρe).

If X is a Banach lattice which does not contain `n
∞ uniformly, then

XU has atoms iff X has.

Consequently all ultrapowers of Lp(0, 1) are atomless and so are their
ultraroots (in Banach lattice sense). But if p 6= 2 an ultraroot of a Lp

space in Banach sense is linearly isometric to an ultraroot in Banach
lattice sense. Hence all Banach spaces that are elementarily
equivalent to Lp(0, 1) are Lp-spaces of an atomless measure space.
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4. Back to elementary equivalence 4.1: the elementary class of Lp(0, 1)

The elementary class of Lp(0, 1) - II
Synthesis

Now by general results in Logic, every infinite dimensional Banach
space is elementary equivalent to a separable one.

The only separable Lp space of an atomless measure space is Lp(0, 1)
(up to an isometric isomorphism).

thus every Lp-space of an atomless measure space is elementarily
equivalent to Lp(0, 1).

Conclusion

The elementary class of Lp(0, 1) consists of all Banach spaces linearly
isometric to an Lp-space of an atomless measure space.
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4. Back to elementary equivalence 4.2: Uncountable categoricity

Uncountable categoricity

It is known that the elementary class of any infinite dimensional Banach
spaces has members of any infinite density character.

It is also known that if for some uncountable cardinal κ, the elementary
class contains only one member (up to linear isometries) then the same is
true for all uncountable cardinals (the class is said “uncountably
categorical”).

A trivial example is the elementary class of `2(N).

This is the class H of infinite dimensional Hilbert spaces:
[The proof goes like that for Lp(0, 1): the class H is closed under
ultrapowers and ultraroots, and `2(N) is its unique separable member].

Since any two infinite dimensional Hilbert space with same density
character are linearly isometric, this class is uncountably categorical.
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4. Back to elementary equivalence 4.2: Uncountable categoricity

Non Hilbertian examples

Recently the structure of Banach spaces with uncountably categorical
elementary class has been studied by Shelah and Usviatsov, but with
essentially no concrete example but the Hilbert spaces.

With C. Ward Henson we tried to build nontrivial examples. All these
examples are separable spaces X such that all the ultrapowers of X and
their ultraroots have the form

X ⊕ H

where H is some Hilbert space (depending on the ultrapower or the
ultraroot) while the norm on the direct sum does depends on the
H-component only through its norm, i.e.

‖x ⊕ h‖ = |||x ⊕ ‖h‖ |||

where |||·||| is a norm on X ⊕ R.
Note that for uncountable κ, X ⊕H has density character κ iff H has, and
there is only one Hilbert space of density character κ.
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4. Back to elementary equivalence 4.3 Uncountable categoricity: Nakano type examples

Nakano type examples

N is a discrete Nakano space (variable exponent space) `(pn) with

1 pn > 2 and pn → 2

2 for no c > 0 the series
∑∞

n=1 c
2pn

|pn−2| is convergent

note that condition (2) tells that the convergence pn → 2 is slow. By a
result going back to Nakano (1951) it implies that N is not linearly
isomorphic to an Hilbert space.

Lemma

Condition pn → 2 implies that the ultrapowers of N are of the form
N ⊕H, where H is an Hilbert space. Moreover the direct sum N ⊕H is
modular, i. e. the norm is given by the convex modular

Θ(x + h) =
∑
n

|xn|pn + ‖h‖2 = ΘN(x) + ΘH(h)

by Luxemburg formula ‖x + h‖ = inf{c > 0 : Θ(c−1(x + h)) ≤ 1}.
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4. Back to elementary equivalence 4.3 Uncountable categoricity: Nakano type examples

Corollary

Let N = `(pn), pn → 2. The class of modular direct sums N ⊕m H, H any
Hilbert space, is closed under ultrapowers (and even by ultraproducts).

Indeed the modular direct sum “pass to the ultrapower” and is associative:

(N ⊕m H)U = NU ⊕m HU = (N ⊕m H)⊕m HU = N ⊕m (H⊕m HU )

and H⊕m HU = H⊕2 HU is an Hilbert space.
We have now a structure result for embeddings from N ⊕m H into N ⊕m K :

Lemma (Rigidity of embeddings)

Assume ∀n, pn > 2. Let H,K be Hilbert spaces. Then every linear
isometric embedding from N ⊕m H into N ⊕m K sends N onto N and H
into K.

In particular every linear isometry from N into N is surjective.
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4. Back to elementary equivalence 4.3 Uncountable categoricity: Nakano type examples

Proposition

Assume 2 < pn → 2. The class of spaces N ⊕m H, H Hilbert space, is
closed under ultraroots.

Corollary

The elementary class of N consists only of direct sums N ⊕m H, H Hilbert
spaces and is thus uncountably categorical.

Remark

In fact, the elementary class of N consists exactly of all the direct sums
N ⊕m H, H Hilbert spaces.

Indeed, for any uncountable κ, both the elementary classes of N and
N ⊕ H contain a member of density character κ, each of which is a direct
sum N ⊕m Hκ, Hκ Hilbert of density κ. But Hκ is unique up to a linear
isometry.
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4. Back to elementary equivalence 4.3 Uncountable categoricity: Nakano type examples

Proof of the proposition

Assume J : L = N ⊕m H → XU is a linear isometry onto; set i = J−1DX ,
this gives a commutative diagramme,

that we insert into a bigger one. We
complete by setting S = iUJ. Recall that LU = N⊕m K with K = H⊕2 HU .

XU

X

DX

>>}}}}}}}}

i
// L

J

OO

LU

L

Recall that iU (XU ) ∩ DL(N ⊕m H) = iUDX (X ) = DLi(X )
Since (embedding structure) N = S(N) = iU (J(N)), and N = DL(N) it
follows that N ⊂ i(X ).
Let πN : N ⊕m H → N the 1st coordinate projection and πN

0 = πN |i(X ).

H0 := ker πN
0 ⊂ ker πN = H is an Hilbert sp. and i(X ) = N ⊕m H0.
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4. Back to elementary equivalence 4.3 Uncountable categoricity: Nakano type examples

Thank you for your attention!
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