# INTERPOLATION OF HARDY SPACES ON CIRCULAR DOMAINS in collaboration with Radosław Szwedek

Function Spaces XI, Zielona Góra, 6-10 VII 2015

Paweł Mleczko

Adam Mickiewicz University in Poznań, Poland



### Theorem (Chalendar–Partington 2002)

Let  $p \in (2,\infty)$  and  $f \in H^p(\partial G)$ . Then

$$H^p(\partial G) = (H^2(\partial G), H^\infty(\partial G))_{\theta, p} \quad \frac{1}{p} = \frac{1-\theta}{2}.$$



I. Chalendar, J. R. Partington

Interpolation between Hardy spaces on circular domains with application to approximation

```
Arch. Math. 78 (2002), 223-232.
```

## Hardy Spaces on a disc

### Theorem (Jones 1983)

If  $p_0 \in (0,\infty)$ , then

$$\begin{aligned} \left(H^{p_{\mathbf{0}}}, H^{\infty}\right)_{\theta,q} &= H^{p,q} \quad \frac{1}{p} = \frac{1-\theta}{p_{\mathbf{0}}} \\ \left(H^{p_{\mathbf{0}}}, H^{\infty}\right)_{\theta} &= H^{p} \quad \frac{1}{p} = \frac{1-\theta}{p_{\mathbf{0}}}. \end{aligned}$$



P. Jones,

 $L^\infty$  estimates for the  $\bar\partial\text{-problem}$  on a half plane Acta Math. 150 (1983), 137–152.

### Köthe function spaces

### X is a Köthe function spaces if

- $X \subset L^0(\Omega, \Sigma, \mu)$  the space of real valued measurable functions on  $\Omega$ . The order  $|x| \leq |y|$  means  $|x(\omega)| \leq |y(\omega)|$  for  $\mu$ -almost all  $\omega \in \Omega$ .
- There exists  $u \in X$  with u > 0  $\mu$ -a.e. on  $\Omega$  and  $|x| \leq |y|$  with  $x \in L^0(\Omega)$  and  $y \in X$  implies  $x \in X$  with  $||x||_X \leq ||y||_X$ .
- $\bigcirc$  If  $x \in X$ , then for any g equimeasurable with f,  $\|f\|_X = \|g\|_X$

We will consider complex Köthe function spaces.

The role model for X are Lebesgue spaces, other important examples

- Orlicz spaces
- Lorentz spaces
- Marcinkiewicz spaces

Köthe function space X is **maximal** (or has the **Fatou property**) if whenever  $\{x_n\}$  is a norm bounded sequence in X such that  $0 \le x_n \uparrow x \in L^0(\Omega)$ , then  $x \in X$  and  $||x|| = \lim_{n\to\infty} ||x_n||$ .

## Hardy spaces $HX(\mathbb{D})$ and $HX(\mathbb{T})$

Let X be the Köthe space on  $\mathbb{T} := [0, 2\pi)$ . We define **Hardy spaces**  $HX(\mathbb{D})$  and  $HX(\mathbb{T})$  in the following way.

$$HX(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \|f\|_{h\times(\mathbb{D})} := \sup_{r \in [0,1)} \|f_r\|_X < \infty \right\}$$
$$HX(\mathbb{T}) = \left\{ f \in L^1(\mathbb{T}, m) : \widehat{f}(n) = 0 \text{ if } n < 0 \text{ and } f^* \in X(\mathbb{T}) \right\}$$

where  $f^*(t) := \lim_{r \to 1^-} f(re^{it})$ ,  $f_r(t) := f(re^{it})$ ,  $t \in \mathbb{T}$ .

### Theorem (Mastyło–M. 2009)

If X is maximal and separable then

 $HX(\mathbb{D}) = HX(\mathbb{T}).$ 



M. Mastyło, P. Mleczko

Absolutely summing multipliers on abstract Hardy spaces Acta Math. Sin. 25 (2009), no. 6, 883–902.

## Theorem (Kisialov-Xu 1992-1999)

If  $(X_1, X_2)$  is a pair of maximal Köthe function spaces on  $\mathbb{T}$ , then for any interpolation functor  $\mathcal{F}$  the following formula holds

## $\mathcal{F}(HX_1(\mathbb{T}), HX_2(\mathbb{T})) = H\mathcal{F}(X_1(\mathbb{T}), X_2(\mathbb{T})).$



### S. V. Kisliakov

Interpolation of  $H^p$  spaces: some recent developments

Function spaces, interpolation spaces, and related topics, Israel Math. Conf. Proc. 13 (1999), 102–140.



#### Q. Xu

Notes on interpolation of Hardy spaces

Ann. Inst. Fourier 42 (1992), 875-889.

We call  $\vec{A} := (A_0, A_1)$  a **Banach couple** if both  $A_0$  and  $A_1$  are Banach spaces such that

$$A_0, A_1 \hookrightarrow \mathcal{X}.$$

For a given Banach couple  $\vec{A}$ , we define spaces

 $A_{0} \cap A_{1} \text{ with the norm } \|a\|_{A_{0} \cap A_{1}} = \max\{\|a\|_{A_{0}}, \|a\|_{A_{1}}\} \text{ (intersection)}$  $A_{0} + A_{1} \text{ with the norm } \|a\|_{A_{0} + A_{1}} = \inf_{a=a+a} \{\|a_{0}\|_{A_{0}} + \|a_{1}\|_{A_{1}}\} \text{ (sum)}$ 

### Interpolation. Functors

By  $T: \vec{A} \to \vec{B}$  we denote an operator  $T: A_0 + A_1 \to B_0 + B_1$ , such that  $T|_{A_0} \in L(A_0, B_0)$  and  $T|_{A_1} \in L(A_1, B_1)$ 

### Definition

By an interpolation functor we mean a mapping  $\mathcal{F}\colon \vec{\mathcal{B}}\to \mathcal{B}$  such that

$$A_0 \cap A_1 \subset \mathcal{F}(\vec{A}) \subset A_0 + A_1$$
 for any  $\vec{A} \in \vec{B}$   
 $T(\mathcal{F}(\vec{A})) \subset \mathcal{F}(\vec{B})$  for any  $\vec{A}, \vec{B} \in \vec{B}$  and  $T \colon \vec{A} \to \vec{B}$ 

### Examples

The real method  $\mathcal{F}(\cdot) = (\cdot)_{\theta,q}$ . The complex method  $\mathcal{F}(\cdot) = (\cdot)_{\theta}$ .

## Hardy spaces on a circular domain

### Circular domains G

A domain G is called a circlular domain if

$$G = \mathbb{D} \setminus \bigcup_{i=1}^{n} (a_i + r_i \mathbb{D}),$$

where  $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$  and  $a_i$ 's belong to  $\mathbb{D}$  (i = 1, 2, ..., n) and  $r_i$ 's are numbers from the interval (0, 1) such that  $\mathbb{D}_n := a_i + r_i \mathbb{D} \subset \mathbb{D}$  for each  $i \in \{1, 2, ..., n\}$ . The role model for a circular domain is an anulus  $\mathbb{A}$ , that is  $\mathbb{A} = \{z \in \mathbb{C} : |z| \in (r_0, 1), r_0 \in (0, 1)\}$ .



### Hardy spaces $H^p(G)$

### Definition

Let G be a circular domain. A function  $f \in H(G)$  belongs to  $H^p(G)$  if there exists a harmonic majorant of  $|f|^p$  on G.

Theorem (Rudin 1955)

$$H^p(G) = H^p(\mathbb{D}) \oplus \bigoplus_{i=1}^n H^p_0(\Omega_i),$$

where  $H_0^p(\Omega_i)$  consists of functions  $f \in H^p(\Omega_i)$  which vanish at infinity.



W. Rudin

#### Analytic functions of class $H^p$

Trans. Amer. Math. Soc. 78 (1955), 46-66.



D. Sarason

The *H<sup>p</sup>* spaces of an annulus Mem. Amer. Math. Soc. No. 56 (1965) pp. 78.

### Circular domains - throughout insight



It can easily seen that if  $\Omega_n$  are the complements of the closure of  $\mathbb{D}_n$ , then

$$G=\mathbb{D}\cap\bigcap_{i=1}^{n}\Omega_{n}.$$

Fundamental rôle play Riemann functions  $\varphi_i \colon \mathbb{D}_i \to \overline{\mathbb{C}}$  given by

$$\varphi_i(z) = rac{r_i}{z-a_i}, \quad z \in \mathbb{D}_i, \ i = 1, \dots, n.$$

$$G:=\mathbb{D}\setminus \bigcup_{i=1}^n(a_i+r_i\mathbb{D}),$$

### Hardy spaces HX(G)

Let G be a circular domain and X be a Köthe function space. For a domain  $\Omega_i$ , the Hardy space  $HX(\Omega_i)$  consists of functions  $f \in H(\Omega_i)$  such that  $f \circ \varphi_i^{-1} \in HX(\mathbb{D}_i)$  with the norm induced from  $HX(\mathbb{D}_i)$ , i.e.

$$\|f\|_{HX(\Omega_i)} = \|f \circ \varphi_i^{-1}\|_{HX(\mathbb{D})}, \quad f \in HX(\Omega_i).$$

The **Hardy space** HX(G) is defined as follows

$$HX(G) := HX(\mathbb{D}) \oplus \bigoplus_{i=1}^{n} HX_{0}(\Omega_{i}),$$

with a norm given by

$$||f||_{HX(G)} = \max\{||f_i||_{HX(\Omega_i)} : f = f_0 + \dots + f_n, i = 0, \dots n\}.$$

Here  $HX_0$  consists of functions from HX with a zero limit at infinity.

Let G be a circular domain and X be a Köthe function space. Let us also denote by R(G) the set of rational functions with no poles in the closure of G.

The **Hardy space**  $HX(\partial G)$  is the closure of R(G) in the topology of  $X(\partial G)$  with a norm given by

$$\|f\|_{HX(\partial G)} := \max\{\|f \circ \varphi_i^{-1}\|_{X(\mathbb{T})} : i = 0, 1, \dots, n\}, \quad f \in X(\mathbb{T}).$$

Note that we identify function from R(G) with it's restriction to  $\partial G$ .

### Theorem (M.–Szwedek 2015)

Let X be a maximal and separable Banach lattice on  $\mathbb{T}$ . Then R(G)forms a dense subset in HX(G) and moreover

 $HX(G) = HX(\partial G).$ 

R(G) – the set of rational functions with no poles in the closure of G.

S. D. Fischer Function theory on planar domains John Wiley & Sons, New York 1983.

### Theorem (M.–Szwedek 2015)

Let  $(X_0, X_1)$  be a couple of the Köthe function space on  $\mathbb{T}$  and G be a circular domain. Then For any interpolation functor  $\mathcal{F}$  the following formula holds

 $\mathcal{F}(HX_0(\partial G), HX_1(\partial G)) = H\mathcal{F}(X_0, X_1)(\partial G).$ 

# Applications

### Corollary (M.–Szwedek 2015)

Let G be a circular domain and suppose that X is an interpolation space with respect to  $\vec{A}$  and let  $x \in HX(\partial G)$ . If the inclusion map id:  $X \to M_{\psi}(\vec{A})$  is bounded with a constant  $C := \| \operatorname{id} \colon X \to M_{\psi}(\vec{A}) \|$ , then for all  $s, t, \varepsilon > 0$  there exist  $x_0 \in HA_0$  and  $x_1 \in HA_1$  such that

$$x = x_0 + x_1, \quad \|x_0\| \leq C(1+\varepsilon)\frac{\psi(s,t)}{s}\|x\|_X, \quad \|x_1\| \leq C(1+\varepsilon)\frac{\psi(s,t)}{t}\|x\|_X.$$

If  $\psi : [0, \infty) \times [0, \infty) \to [0, \infty)$  is non-decreasing in each variable and positively homogeneous (that is,  $\psi(\lambda s, \lambda t) = \lambda \psi(s, t)$  for all  $\lambda, s, t \ge 0$ ), then the *Marcinkiewicz space*  $M_{\psi}(\vec{A})$  generated by  $\vec{A}$  is defined

$$M_\psi(ec{A}):=\Big\{a\in A_0+A_1:\|a\|:=\sup_{s,t>0}rac{K(s,t,a)}{\psi(s,t)}<\infty\Big\}.$$

S. V. Kisliakov

Quantitative aspect of correction theorems

Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 92 (1979), 182-191.

# The proof

### Theorem (M.–Szwedek 2015)

If  ${\mathcal F}$  is any bounded interpolation functor then

$$\mathcal{F}\left(\bigoplus_{i}^{n}\vec{A_{i}}
ight)\simeq \bigoplus_{i=1}^{n}\mathcal{F}\left(\vec{A_{i}}
ight)$$

for all Banach couples  $\vec{A_1}, \ldots, \vec{A_n}$ , where the corresponding constants may depend only on F and n.