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The Contraction Principle says not only that a 
self-contraction defined on a complete metric 
space has a unique fixed point, but also that any 
orbit converges to this point. This fact is not true, 
in general, for nonexpansive mappings. 

One of most celebrated fixed point Theorem 
for nonexpansive mappings [i.e. mappings T for 
which d(Tx,Ty)  d(x,y)] is of course that of Kirk 

 
Theorem (W. A. Kirk Amer. Math. Monthly 72 

(1965) 1004-1006) Let E be a reflexive Banach 
space and let K be a closed, convex, bounded 
subset of E having normal structure. 
Then any nonexpansive self-mapping defined 
on K has at least a fixed point. 
 

However, easy examples show that the 
sequence of successive approximations  

         
can be not convergent, also if T is a self-mapping 
defined on a closed convex and bounded subset 
of a Hilbert space. 
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  Nevertheless, as shown by Krasnoselskii 
(Uspehi Mat. Nauk (N.S.) 10 (1955) 123-127, 
we can obtain a convergent sequence of 
successive approximations if instead of T we 
consider the averaged mapping 

     
 

 
(   ), 

 
The result found by Krasnoselkii says that 
 
If the nonexpansive mapping T is defined on a 
closed, convex and bounded subset of a 
uniformly convex Banach space and has 
compact range, then the sequence 

            
 

 
(      ), 

is strongly convergent. 
 
 More in general, if K is a closed convex subset 
of a normed linear space X, a generalization of 
the above method is due to Schaefer: 
  
Theorem (H. Schaefer, Jber. Deutsch. Math. 
Verein. 59 (1957) 131-140) Let K be a closed, 
convex and bounded subset of a Banach space X 
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and let T be a nonexpansive self-mapping 
defined on K. Let   be fixed in [0,1]. Consider 

      (   )  
and   

       
    (   )        

              
the sequence of successive approximations for 
   .   Then 

(i) If X is strictly convex, Fix(T) is convex. 
(ii) If X is uniformly convex and T(K) is 

compact, the orbit    converges strongly 
to a fixed point of T.  

(iii) If X is a real Hilbert space and T is weakly 
continuous on K,    converges weakly to 
a fixed point (depending on   and xo) 

 
REMARKS: 

 The result (iii) was improved by Opial,  Bull. 
Amer. Math. Soc. 73 (1967) 591-597: 

Let T (with Fix(T) non empty) a nonexpansive 
self mapping defined on a closed, convex subset 
K of an uniformly Banach space with duality 
mapping weakly continuous. Then for each xo in 
K and for each    in [0, 1], the orbit 
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    (   )        

weakly converges to a fixed point of T. 
 

[And the strong convergence? In general no. 
The beautiful  example of Genel and 
Lindestrauss [Israel J. Math. 22 (1975) 81-86] 
exhibits a nonexpansive mapping T on the 
unitary ball of the Hilbert space l2 for which the 
Krasnoselskii’s sequence of the successive 
approximations 

       
    (   )        

converges weakly but not strongly] 
  

 The result (ii) of Schaefer’s Theorem is the 
extension of the Krasnoselskii’s Theorem from 
     to   . Such result was extended to 

strictly convex spaces by Edelstein [Amer. 
Math. Montly 13 (1966) 507-510] 

 
 At this point, the question to see if also the 
strict convexity could be removed, remained 
open for ten years. In 1976 this question was in 
the affirmative answered by Ishikawa.  
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 It is in such context that the basic results 
about this theme have developed, almost 
simultaneously, sometimes overlapping.  
  
 So far we have mentioned the Krasnoselskii 
Algorithm 

     
 

 
(      ) 

 
and the Schaefer algorithm 

       
    (   )        

 
  

More or less in the same years is introduced 
the Mann-Dotson Algorithm, that generalizes the 
two previous, on which we want to dwell.  
 
 
 The process 

     (    )             (*) 
 
 
is well known as Mann iterative process.  
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In the original paper of Mann, [1]“Mean value 
methods in iteration” published on Proc. AMS, 4 
(1953) 506-510, (*) does not appear. The process 
studied by Mann is most more general than (*). 
It introduced an infinite triangular matrix A, 

  

[
 
 
 
 

  
      

 
  
  

   
      

  
 

  
  ]

 
 
 
 

 

 
whose elements satisfy the following 
restrictions: 
 
(A1)                

(A2)                

(A3)   ∑             

(A4)                  

 
Starting with an arbitrary element 1x  one can 

then define the process  
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{
   ∑      

 

   
      (  )

 

 
This process is determinated by the initial point 
x1, the matrix A and the mapping T. It can be 
denoted briefly by M(x1, A, T) and can be 
regarded as a generalized iteration process 
because when A is the identity matrix I, the 
process M(x1, I, T) is just the ordinary Banach-
Caccioppoli-Picard’s iteration xn+1=T(xn). 
Mann proved that in case E is a Banach space 
and the domain of a continuous self –mapping T 
is a closed convex subset C of E, then the 
convergence of either xn or vn to a point y implies 
the convergence of the other to y and also 
implies Ty=y. 
 As a particular case of the general process 
M(x1, A, T), Mann considered the Cesàro matrix 
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[
 
 
 
 

   
       
         

  
  
  

         
   

    
  ]

 
 
 
 

 

 

 
 
In this particular case the vn of the general 
process 

{
   ∑      

 

   
      (  )

 

 
becomes 

     (  
 

   
)    

 

   
   . 

 
 

After 13 years, was published the paper of 
W. G. Dotson jr. [2]“On the Mann iterative 
process”, Trans. AMS 149 (1970) 65-73. 
It is in this paper that Dotson, probably inspired 
by the example of the Cesaro matrix, defined a 
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normal  Mann process as a Mann process M(x1, 
A, T) for which the matrix A satisfies not only  
(A1)                

(A2)                

(A3)   ∑             

(A4)                  

but also 

(A5)          (          )               

(A6)   either           or             
 

And even in such paper Dotson shown, 
besides other interesting results, that the 
sequence vn in a normal Mann process M(x1, A, 
T) satisfies  

     (    )         
where tn = an+1,n+1. 
  
 It is well known that if T is a nonexpansive 
self mapping on a closed convex subset of a 
uniformly convex Banach space with a Frechèt 
differentiable norm and if Fix(T) is nonempty, 
then the sequence xn generated by the Mann-
Dotson algorithm 
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     (    )         

 
converges weakly to a point of Fix(T) if  
 

∑  (    )    

 
( S. Reich, “Weak convergence theorems for 
nonexpansive mappings in Banach spaces” 
JMAA 67 (1979) 274-276). 
  This convergence is in general not strong 
(there is the celebrated counter-example of  
Genel and Lindestrauss, Israel J. Math. 22 (1975) 
81-86). 
 

So, we are interesting all the results in which 
one can obtain strong convergence, of course 
either in some particular space or for some 
particular nonexpansive mapping. 
Some of this results are the following: 
 
Theorem ( H. F. Senter and W. G. Dotson jr, 
Proc. AMS 44 (1974) 375-380) Suppose X is a 
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uniformly convex Banach space, C is a closed, 
bounded, convex, nonempty subset of X and T is 
a nonexpansive self-mapping on C that satisfies 
the following   
Condition (I): there is a nondecreasing  function  

  [   )  [   ) with   ( )     ( )  

        ( (     ( )))   (   ( ))    

   Then for any x1 in C, the normal Mann-
Dotson process  

     (    )         
with          , converges strongly to 
a point of Fix(T). 
 

With completely different techniques 
Ishikawa was able to prove the same result in 
any Banach space, not only in uniformly convex 
Banach spaces: 

 
Theorem ( S. Ishikawa, Proc. AMS 19 (1976) 65-
71) Suppose X is a Banach space, C is a closed, 
convex, nonempty subset of X and T is a 
nonexpansive self-mapping on C that satisfies 
either  
(i) T(C)  is compact 
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or 
(ii) Fix(T) is nonempty and T satisfies Condition 
(I).  
Then for any x1 in C, the normal Mann- Dotson 
process  

     (    )         
with          ∑       converges 
strongly to a point of Fix(T). 
(Very beautiful proof!)  
 
Another nice result is due to Chidume in the 
Lebesgue spaces: 
 
Theorem (C. E. Chidume, Proc. AMS 99 (1987) 
283-288) Suppose X=Lp (or lp), p greater or equal 
than 2, and C is a nonempty closed convex 
bounded subset of X. Suppose T is a self-
mapping on C lipschitzian and strictly pseudo-
contractive, i.e., there exists k>1 such that it 
results  
‖   ‖  ‖(   )(   )    (     )‖  
for all positive r (some author call this mappings 
strong pseudocontractive) 
Let tn be a real sequence in ]0,1[such that  
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(i) ∑     ,     (  ) ∑   
   . 

 
Then the iteration Mann-Dotson process 
converges strongly to the unique fixed point of 
T. 
 
Remark 1: The same Chidume, together with 
Mutangadura (Proc. AMS 129 (2001) 2359-
2363) given the very nice example of a Lipschitz 
pseudo-contraction in the real plane with a 
unique fixed point for which every nontrivial 
Mann-Dotson sequence fails to converge. 
Underline explicitly that while the Mann-Dotson 
sequence does not converge to the fixed point of 
T in this example, the Ishikawa sequence does 
(this follows by a result of  Liu Qihou, JMAA 148 
(1990) 55-62) 
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Another possible way to obtain strong 
convergence is to modify the process 

     (    )         
 
Recall here only few of such modifications: 
 

 Halpern process  (B. Halpern Bull. AMS 73 
(1967) 957-961) 
 

     (    )        
 

in which the convex combination used to define 
xn+1 is “anchored” to u. (In my opinion, the proof 
that the Halpern process for a nonexpansive self-
mapping defined on the unit closed ball in a 
Hilbert space converges to the fixed point of 
minimum norm is simple but it is a jewel of the 
human mind 
 

 Ishikawa process (S. Ishikawa, Proc. AMS 44 
(1974) 147-150) 
 

        (    )         
     (    )         
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in which there is a double convex combination. 

 
 

 Moudafi process (A. Moudafi, JMAA 241 
(2000) 46-55) 
 

     (    ) (  )        
 

where f is a contraction, called viscosity, since it 
represents a “brake” in the originary Mann-
Dotson process. 
 
The introduction of the viscosity term is not a 
simple formal object, but its significance is 
substantial. Indeed, Moudafi proved 
 
 
Theorem. In the setting of Hilbert spaces, the 
sequence generated by the process    

     (    ) (  )        
 
 strongly converges to the unique solution of the 
variational inequality 
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Find p in Fix(T) such that 
 

 (   )                 ( )  
 
in other words, the unique fixed point of the 
operator     ( )  . 

 
Remark: A further modification of the Moudafi 
process is in the paper of my self and Hong Kun 
Xu [23] G. M. and H. K. Xu, JMAA 318 (2006) 43-
52. We introduced in the viscosity process a 
strongly positive linear bounded operator. This 
introduction is still not formal but gives another 
bridge between the metric  fixed points theory 
and the calculus of variation. Indeed, we proved 
 
Proposition. Let H be a real Hilbert space. 
Consider on H a nonexpansive mapping T with a 
fixed point, a contraction f with coefficient   
and a strongly positive linear bounded operator 
A with coefficient  ̅   . Let      ̅  . 
Then, for suitable choice of the coefficients, the 
sequence generated by the iterative method  

         (  )  (     )    
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converges strongly to a fixed point p in Fix(T) 
which solves the variational inequality 
 

 (    )                 ( )  
 
  which is the optimality condition for the 
minimization problem 

   
     ( )

 

 
        ( ) 

 
where h is a potential function for   . 
 
 

 CQ-method (K. Nakajo and W. Takahashi, 
JMAA 279 (2003) 372-379) 
 

In a Hilbert space, 
 

{
 
 

 
 
                       
        (    )   

   {     ‖    ‖  ‖    ‖}

   {                   }
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Note that we call such process  a CQ method for 
the Mann iteration process because at 
each step the Mann iterate     is used to 
construct the sets    and    which are in turn 
used to construct the next iterate      and 
hence the name. 
 
 
 

 Shrinking projection method (W. Takahashi, 
Y. Takeuchi, R. Kubota, JMAA 341 (2008) 
276-286) 
 

In a Hilbert space, 
 

{
 
 

 
 
                       
        (    )   

     {      ‖    ‖  ‖    ‖}
          

  

 

The authors proved that if the sequence {  } is 
bounded above away from one, then the 
sequence {   } generated by the shrinking 
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projection method, converges strongly to 
    ( )   

 
Let's see how one can formulate the algorithm in 
Banach spaces. 
 
Let X be a Banach space and X* its dual space. 
We denote by J the normalized duality mapping 

from X to    
 defined by 

   {            ‖ ‖  ‖ ‖ }  

 
As well known, if C is a non-empty, closed and 
convex subset of a Hilbert space H, the metric 
projection PC is nonexpansive. This fact 
characterizes Hilbert spaces and consequently it 
is not available in other Banach spaces. 
In this setting, Alber and and Reich in 1994 
introduced a generalized projection operator 
which is analogous to the metric projection in 
Hilbert spaces. 
Suppose X a smooth Banach space. The 
generalized projection 

       
is a map that assigns to an arbitrary point x 
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in X the set of minimal points with respect to the 
Liapunov functional 
 (   )  ‖ ‖          ‖ ‖ , 
that is 

  ( )  { ̃      ( ̃  )     
   

 (   )} 

If X is strictly convex and C ia a non-empty, 
convex and closed subset of X, then   ( ) 
consists of at most one element for any x in X. 
The basic properties of the generalized 
projection have been presented by Alber in the 
case of uniformly convex and uniformly smooth 
Banach spaces. Kamimura and Takahashi (SIAM J. 
Optim. 13 (2003)) proved them in reflexive, 
strictly convex and smooth Banach spaces. Li 
(JMAA 306 (2005)) studied the mapping    in 
the wider setting of reflexive Banach spaces. 
The Liapunov functional  (   ) is a particular 
case of the functionals used by Butnariu, Reich 
and Zalavski (J. Appl. Anal. 7 (2001)) to define the 
relatively non-expansive mappings in Banach 
spaces. Following them, we say that a mapping 
       is relatively non-expansive with 
respect to the convex function 
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if: 
(1) C is a non-empty, convex and closed subset of 
a smooth Banach space X; 
(2) the function h is lower semi-continuous on C; 
(3) there exists a point c in C such that, for any x 
in C we have  

  (    )    (   )  
 
 where    stands for the Bregman distance given 
by  

  (   )   ( )   ( )   (     ) 
 
where  (   ) denotes the right-hand derivative 
of h at x in the direction d. 
Note that under these assumptions, c is a fixed 
point of T (Butnariu,Reich, Zaslavski, NFAO 
2003). We remark also that  
if  ( )  ‖ ‖   then  ‖ ‖ (   )    (   ) 

 
Of course if X is a Hilbert space then 

 ‖ ‖ (   )    (   )  ‖   ‖  
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 The problem described above occurs in 
mathematics in various forms. Let us present 
some examples: 
 

(a) If the mapping T is such that, for some c in 
C, ‖    ‖  ‖   ‖ for all x in C, (i.e. 
mappings admitting a center, studied 

by Garcia Falset, Llorens-Fuster and Prus, NA 
2007)), then it is relatively non-expansive with 
respect to the function  ( )  ‖   ‖ . 
 

(b) Each map T quasi-non-expansive with at 
least a fixed point (i.e. ‖    ‖  
‖   ‖ for any x in C and p in Fix(T) is 
relatively nonexpansive 

with respect to any of the functions 
 ( )  ‖   ‖ . 
 

(c) Of course also each map T nonexpansive with 
a fixed point is relatively nonexpansive with 
respect to any of the functions  ( )  ‖   ‖ . 
  
But, in general, relatively nonexpansive 
mappings with respect to arbitrary convex 
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functions h may not be mapping admitting a 
center (and so, a fortiori, quasi-nonexpansive).  
Motivated by the ideas above, Matsushita and 
Takahashi (FPTA 2004) introduced the concept of 
relatively non-expansive mapping.  
More precisely, let C be a non-empty closed 
convex subset of a smooth, strictly convex and 
reflexive Banach space X. Let T be a mapping 
from C into itself.  
A point z in C is said to be an asymptotic fixed 
point of T if there exists a sequence {  } in C 
converging weakly to z and     ‖      ‖   . 
We denote the set of all asymptotic fixed points 

of T by  ̃( ). The mapping T is said to be a 
relatively nonexpansive mapping if the following 
three conditions are satisfied: 
(R1) Fix(T) is nonempty; 
(R2)  (    )    (   )       ( )       

(R3)  ̃( )     ( ). 
Of course the concept of relatively non-
expansive mapping is much stronger than the 
concept of relatively nonexpansive mapping with 
respect to the function  ( )  ‖ ‖ . 
Nevertheless it seems yet interesting, due to the 
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several examples of such a type of mapping 
given by Kohsaka and Takahashi (FPTA 2007).  
By using the generalized projection    several 
algorithms to find a fixed point of relatively non-
expansive mappings has been developed, 
modifying the Mann, Ishikawa and hybrid 
algorithms. For the sake of completeness we 
quote here one of the latest results that covers 
many previous results: 
Theorem (X. Qin, Y. Su, NA 2007). Let E be a 
uniformly convex and uniformly smooth Banach 
space, let C be a non-empty closed convex 
subset 
of E, let        be a relatively non-expansive 
mapping such that    ( )   . Assume that 
 {  }  and {  } are sequences in [0,1] 
such that               and     . 
Define a sequence {  }  in C by the following 
algorithm: 
 



26 

 

{
  
 

  
 
    

      (      (        )

      (      (        )

   {     (    )      (    )  (    ) (    }

   {                   }
            

  

 

 
Then, if T is uniformly continuous, we have that 
{  }  converges to     ( )  . 

 
With the aim to obtain simpler hybrid algorithm, 
valid in more general Banach spaces, we propose 
the following approach, by using the ideas 
above. First of all, note that if C is a non-empty, 
closed and convex subset of a reflexive Banach 
space X and if         is a functional such 
that for any     ,  (    )     
is strictly convex, weakly lower semi-continuous 
and  (     ) is not bounded if ‖  ‖     then 
for any non-empty closed convex subset D of C, 
there exists exactly one element d in D such that 
 (    )         (    ). 
We put       (  ) and, following Censor and 

Lent (JOTA, 1981), call      the Bregman 
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projection on D induced by f. Note that if 
 (   )   (   ) then          while if X is a 

Hilbert space and  (   )   (   )  ‖   ‖    
then           , where    is the classical 

metric projection. 
 Moreover, it easy to see that in a smooth, 
strictly convex Banach space X the functionals 
 (   )   (   ) and  (   )  ‖   ‖   
restricted to    , where C is a non-empty, 
closed and convex subset of X, have the 
following properties: 
 

(i) for any        (    )     is strictly 
convex, weakly lower semi-continuous and 
 (     ) ‖  ‖    is not bounded if ‖  ‖    
 

(ii) If            are such that       
weakly and  (     )    (     )   then 
‖  ‖  ‖  ‖. 
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Now we are able to give our results (G. Lewicki 
and G.M. On some algorithms in Banach spaces 
finding fixed points of nonlinear mappings, NA 
71 (2009) 3964-3972). 
 
 
Theorem 1.  
 Let X be a reflexive, strictly convex, smooth 
Banach space with the property (K) of 
     ̆      . Assume C  is a 
non-empty, closed and convex subset of X.. Let 
      be a continuous relatively 
nonexpansive mapping with respect to 

 ( )  ‖ ‖ , i.e.         (    )  
 (   )      .  
Let          be a functional such that for 
any       (    )     is strictly convex, 
weakly lower semi-continuous and  (     ) is 
not bounded if ‖  ‖      
Assume furthermore that if            are 
such that       weakly and  (     )  
  (     )   then ‖  ‖  ‖  ‖. 
 Let {  }  [     be a sequence or real numbers 
such that                 
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For      define a sequence {  }     by the 
following algorithm: 

{
 

 
          

        (          (      )      )

   {        (      )   (      )}
          

   

 

 
Then {  } strongly converges to    
       

      ( ) 

  
Remark 1.3. (a) In our Theorem  the hypotheses 
on X are weaker than usual assumptions of 
uniform convexity and uniform smoothness.  
For example, any strictly convex, reflexive and 
smooth Musielak_Orlicz space satisfies our 
assumptions (Hudzik, Kowalewski, Lewicki, Z. 
Anal. Anwendungen 2006) 
while, in general, these spaces need not to be 
uniformly convex or uniformly smooth. 
(b) The hypotheses on the mapping T are 
considerably weakened and they are satisfied 
also in the case of a continuous quasi-
nonexpansive mapping T that 0 belongs to Fix(T) 
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(If T is a continuous quasi-nonexpansive mapping 
such that 0 does not belong to Fix(T)  but 
     ( ), the algorithm yet works with    
instead of  , with the the same proof). 
(c) The algorithm is simpler than the CQ-
algorithm (since works only with the convex sets 
  , that are the intersection of      with a 
convex set and not with the operator    
 (d) The sequence {  }  depends on the function 
f and so the algorithm is extremely flexible. 
(e) The Bregman projection      induced by 

specific functions f are studied because of their 
intrinsic interest in various 
applications (Alber and Butnariu, JOTA 1997)  
 
Now we present a modification of the algorithm 
in Theorem 1.2 for a class of mappings wider 
than the class of the 
relatively non-expansive mapping with respect to 
 ( )  ‖ ‖ . 
 
Theorem 2. Let X be a reflexive, strictly convex, 
smooth Banach space with the property (K). 
Assume C  is a 
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non-empty, closed and convex subset of X. Let 
      be a continuous mapping such that 
        (    )   (   )    (    )      .  

Let          be a functional such that for 
any       (    )     is strictly convex, 
weakly lower semi-continuous and  
 (     )    (     )   then ‖  ‖  ‖  ‖. 
 Let {  }  [     be a sequence or real numbers 
such that              
For      define a sequence {  }     by the 
following algorithm: 

{
 

 
               

        (          (      )      )

   {        (      )   (      )    (          }

          
   

 

 
Then if f satisfies the assumptions of Theorem 1,  
{  } strongly converges to  

          
      ( ) 

 
At least, we present a version of the previous 
Theorem  in the case of Hilbert spaces in which 
we will not assume that            
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Theorem 3. Let H be a Hilbert space. Assume C  
is a non-empty, closed and convex subset of H. 
Let       be a continuous mapping such that 
      and k in [0,1) such that 
‖    ‖  ‖   ‖   ‖    ‖         

Let {  }  [   ). 
For      define a sequence {  }     by the 
following algorithm: 

{
 

 
               

      (    )   

     {     ‖    ‖  ‖    ‖   ‖      ‖ }
          

   

 

 
Then {  } strongly converges to  

          
      ( ) 

Remark. In Hilbert spaces any continuous quasi-
strict pseudo-contraction (and thus, a fortiori, 
any strict pseudo-contraction) 
satisfies the assumption on T in the Theorem.  
 
Reasuming, we have seen some modified Mann’s 
methods to get strong convergence 
 

 Halpern’s method   
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     (    )        
 

 Ishikawa’s method  
        (    )         

     (    )         

 

 Moudafi’s method  
     (    ) (  )        

 

 G.M. and Xu’s method  
         (  )  (     )    

 
 
 
 
 

 CQ-method  
In a Hilbert space, 
 

{
 
 

 
 
                       
        (    )   

   {     ‖    ‖  ‖    ‖}

   {                   }
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 Shrinking projection method  
In a Hilbert space, 
 

{
 
 

 
 
                       
        (    )   

     {      ‖    ‖  ‖    ‖}
          

  

 

 
 

Lastly, we present a method that is almost the 
Mann’s method      (    )        , 
namely  

     (    )                
 
Under mild assumptions on the coefficients that 
permit    to be small what you want (but not 
zero), this little perturbation of the Mann’s 
method, ensures the strong convergence to a 
point of Fix(T) of minimum norm (G. M.and L. 
Muglia, FPTA 2015) 
 

Dziękuję bardzo za uwagę 
 


