INTERPOLATION OF CESÁRO AND TANDORI SPACES

Karol Leśnik

Poznań University of Technology

Function Spaces XI 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cesàro operator For $f \in L^1_{loc}$ $Cf(x) = \frac{1}{x} \int_0^x f(t) dt, \quad 0 < x < \infty.$ (1)

Copson operator
For
$$f \in L^{1}_{loc}$$

 $C^{*}f(x) = \int_{x}^{\infty} \frac{f(t)}{t} dt, \quad 0 < x < \infty.$ (2)

Nonincreasing majorant For $f \in L^0$ $\tilde{f}(x) = \operatorname{ess\,sup} |f(t)|, \quad 0 < x < \infty.$ (3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cesàro operator
For
$$f \in L^1_{loc}$$

 $Cf(x) = \frac{1}{x} \int_0^x f(t) dt, \quad 0 < x < \infty.$ (1)

Copson operator
For
$$f \in L^1_{loc}$$

 $C^*f(x) = \int_x^\infty \frac{f(t)}{t} dt, \quad 0 < x < \infty.$ (2)

Nonincreasing majorant For $f \in L^0$ $\tilde{f}(x) = \operatorname{ess\,sup} |f(t)|, \quad 0 < x < \infty.$ (3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cesàro operator
For
$$f \in L^1_{loc}$$

 $Cf(x) = \frac{1}{x} \int_0^x f(t) dt, \quad 0 < x < \infty.$ (1)

Copson operator For $f \in L^1_{loc}$ $C^*f(x) = \int_x^\infty \frac{f(t)}{t} dt, \quad 0 < x < \infty.$ (2)

Nonincreasing majorant For $f \in L^0$ $\tilde{f}(x) = \underset{x \leq t}{\mathrm{ess}} \sup_{y \in T} |f(t)|, \quad 0 < x < \infty.$ (3)

Banach function space (B.f.s.)

A Banach space $X \subset L^0(\mathbb{R}_+)$ with

- ▶ if $x \in X, y \in L^0$ and $|y| \leq |x|$ -a.e., then $y \in X$ and $||y||_X \leq ||x||_X$
- there is $x \in X$ such that x(t) > 0 a.e.

Cesàro space For a B.f.s. X

$$CX = \{ f \in L^0 : \|f\|_{CX} = \|C|f|\|_X < \infty \}.$$
(4)

Tandori space For a B.f.s. X $\widetilde{X} = \{ f \in L^0 : ||f||_{\widetilde{\alpha}} = ||\widetilde{f}||_X < \infty \}.$ (5)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

Banach function space (B.f.s.)

A Banach space $X \subset L^0(\mathbb{R}_+)$ with

- ▶ if $x \in X, y \in L^0$ and $|y| \leq |x|$ -a.e., then $y \in X$ and $||y||_X \leq ||x||_X$
- there is $x \in X$ such that x(t) > 0 a.e.

Cesàro space For a B.f.s. X

$$CX = \{ f \in L^0 : \|f\|_{CX} = \|C|f|\|_X < \infty \}.$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tandori space For a B.f.s. X $\widetilde{X} = \{ f \in L^0 : \|f\|_{\widetilde{\omega}} = \|\tilde{f}\|_X < \infty \}.$ (5)

Banach function space (B.f.s.)

A Banach space $X \subset L^0(\mathbb{R}_+)$ with

- ▶ if $x \in X, y \in L^0$ and $|y| \leqslant |x|$ -a.e., then $y \in X$ and $||y||_X \leqslant ||x||_X$
- there is $x \in X$ such that x(t) > 0 a.e.

Cesàro space For a B.f.s. X

$$CX = \{ f \in L^0 : \|f\|_{CX} = \|C|f|\|_X < \infty \}.$$
(4)

Tandori space For a B.f.s. *X*

$$\widetilde{X} = \{ f \in L^0 : \|f\|_{\widetilde{X}} = \|\widetilde{f}\|_X < \infty \}.$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ecxample

For $X = L^p$ with p > 1 we have $CL^p = Ces_p$

• For
$$p > 1$$
 we have $Ces'_p = \widetilde{L^{p'}}$

Theorem (Maligranda-KL 2015)

Let X be a B.f.s. with the Fatou property such that $C : X \to X$ is bounded. If the dilation operator σ_b is bounded on X for some 0 < b < 1 then

$$(CX)' = \widetilde{X'}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ecxample

• For $X = L^p$ with p > 1 we have $CL^p = Ces_p$

• For
$$p > 1$$
 we have $Ces'_p = \widetilde{L^p}$

Theorem (Maligranda-KL 2015)

Let X be a B.f.s. with the Fatou property such that $C : X \to X$ is bounded. If the dilation operator σ_b is bounded on X for some 0 < b < 1then

$$(CX)' = \widetilde{X'}$$

Interpolation spaces

▶ X is **intermediate** for a (compatible) couple of Banach spaces (X_0, X_1) when $X_0 \cap X_1 \subset X \subset X_0 + X_1$.

• $T: (X_0, X_1) \rightarrow (X_0, X_1)$ when T is defined on $X_0 + X_1$ and

 $T: X_0 \to X_0 \text{ and } T: X_1 \to X_1$

with

$$\|T\|_{(X_0,X_1)\to(X_0,X_1)}=\max\{\|T\|_{X_0\to X_0},\|T\|_{X_1\to X_1}\}.$$

▶ X is **interpolation** space for the couple (X_0, X_1) (we write $X \in int(X_0, X_1)$) when X is intermediate and for each $T : (X_0, X_1) \rightarrow (X_0, X_1)$ there holds

$$T: X \to X.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Interpolation spaces

- ▶ X is **intermediate** for a (compatible) couple of Banach spaces (X_0, X_1) when $X_0 \cap X_1 \subset X \subset X_0 + X_1$.
- ▶ $T: (X_0, X_1) \rightarrow (X_0, X_1)$ when T is defined on $X_0 + X_1$ and

$$T: X_0 \to X_0 \text{ and } T: X_1 \to X_1$$

with

$$||T||_{(X_0,X_1)\to(X_0,X_1)} = \max\{||T||_{X_0\to X_0}, ||T||_{X_1\to X_1}\}.$$

▶ X is **interpolation** space for the couple (X_0, X_1) (we write $X \in int(X_0, X_1)$) when X is intermediate and for each $T : (X_0, X_1) \rightarrow (X_0, X_1)$ there holds

$$T: X \to X.$$

Interpolation spaces

- ▶ X is **intermediate** for a (compatible) couple of Banach spaces (X_0, X_1) when $X_0 \cap X_1 \subset X \subset X_0 + X_1$.
- ▶ $T: (X_0, X_1) \rightarrow (X_0, X_1)$ when T is defined on $X_0 + X_1$ and

$$T: X_0 \to X_0 \text{ and } T: X_1 \to X_1$$

with

$$\|T\|_{(X_0,X_1)\to(X_0,X_1)}=\max\{\|T\|_{X_0\to X_0},\|T\|_{X_1\to X_1}\}.$$

• X is **interpolation** space for the couple (X_0, X_1) (we write $X \in int(X_0, X_1)$) when X is intermediate and for each $T : (X_0, X_1) \rightarrow (X_0, X_1)$ there holds

$$T: X \to X.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

K-functional For $f \in X_0 + X_1$ the *K*-functional of *f* with respect to the couple (X_0, X_1) is defined as

 $K(t, f; X_0, X_1) = \inf\{\|f_0\|_{X_0} + t\|f_1\|_{X_1} : f = f_0 + f_1\} \text{ for } t > 0.$

K-method of interpolation

For a given B.f.s. E over containing the function min $\{t, 1\}$ define

$$(X_0, X_1)_E^K = \{ f \in X_0 + X_1 : K(\cdot, f, X_0, X_1) \in E \}$$

with the norm

$$\|f\|_{(X_0,X_1)_E^{\kappa}} = \|K(\cdot,f,X_0,X_1)\|_E.$$

K-functional For $f \in X_0 + X_1$ the *K*-functional of *f* with respect to the couple (X_0, X_1) is defined as

 $K(t, f; X_0, X_1) = \inf\{\|f_0\|_{X_0} + t\|f_1\|_{X_1} : f = f_0 + f_1\} \text{ for } t > 0.$

K-method of interpolation

For a given B.f.s. *E* over containing the function $\min\{t, 1\}$ define

$$(X_0, X_1)_E^K = \{f \in X_0 + X_1 : K(\cdot, f, X_0, X_1) \in E\}$$

with the norm

$$\|f\|_{(X_0,X_1)_E^K} = \|K(\cdot,f,X_0,X_1)\|_E.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

A couple (X_0, X_1) is called Calderón couple when each interpolation space may be generated by the K-method.

Theorem [Brudnyi-Kruglyak]

TFAE:

i) For $X \in int(X_0, X_1)$ there is a B.f.s. *E* such that

 $(X_0, X_1)_E^K = X$

ii) For each $f, g \in X_0 + X_1$

 $K(\cdot, f; X_0, X_1) \leqslant K(\cdot, g; X_0, X_1) \implies \exists_{T:(X_0, X_1) \to (X_0, X_1)} Tg = f$

iii) For each $f, g \in X_0 + X_1$ and $X \in int(X_0, X_1)$

 $K(\cdot, f; X_0, X_1) \leqslant K(\cdot, g; X_0, X_1), g \in X \implies f \in X$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A couple (X_0, X_1) is called Calderón couple when each interpolation space may be generated by the K-method.

Theorem [Brudnyi-Kruglyak]

TFAE:

i) For $X \in int(X_0, X_1)$ there is a B.f.s. *E* such that

$$(X_0,X_1)_E^K=X$$

ii) For each
$$f,g \in X_0 + X_1$$

 $K(\cdot, f; X_0, X_1) \leqslant K(\cdot, g; X_0, X_1) \implies \exists_{T:(X_0, X_1) \to (X_0, X_1)} Tg = f$

iii) For each $f, g \in X_0 + X_1$ and $X \in int(X_0, X_1)$

 $K(\cdot, f; X_0, X_1) \leqslant K(\cdot, g; X_0, X_1), g \in X \implies f \in X$

- (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1], \Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

▶ (L^1, L^∞) - Calderón

- (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1],\Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- (E, L^{∞}) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1],\Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- (E, L^{∞}) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1],\Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1],\Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (*Ces*_∞, *L*¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1],\Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ► (H^p, H^q) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- (Ces_{∞}, L^1) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1], \Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

- ▶ (L^1, L^∞) Calderón
- (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ► (H^p, H^q) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ► (Ces_∞, L¹) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^{\infty}, L^1 \cap L^{\infty})$ Maligranda-Ovchinnikov
- $(C[0,1], \Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- ► (E, L[∞]) for non-strechable symmetric E Kalton

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ (L^1, L^∞) Calderón
- (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- (Ces_{∞}, L^1) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^\infty, L^1 \cap L^\infty)$ Maligranda-Ovchinnikov
- ► (C[0, 1], Λ_θ[0, 1]) Cwikel-Mastyło
- (E, L^{∞}) for non-strechable symmetric E Kalton

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ (L^1, L^∞) Calderón
- ▶ (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- ▶ (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- (Ces_{∞}, L^1) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^\infty, L^1 \cap L^\infty)$ Maligranda-Ovchinnikov
- $(C[0,1], \Lambda_{\theta}[0,1])$ Cwikel-Mastyło

► (E, L[∞]) for non-strechable symmetric E - Kalton

- ▶ (L^1, L^∞) Calderón
- (L^1, L^q) and (L^p, L^∞) Lorentz-Shimogaki
- (L^p, L^q) Cwikel, Arazy-Cwikel, Sparr
- (E, L^{∞}) for symmetric E which is strechable Kalton
- ▶ (*H^p*, *H^q*) Jones
- $((A_0, A_1)_{\theta_0, \rho_0}, (A_0, A_1)_{\theta_1, \rho_1})$ Cwikel
- ▶ (Ces_{∞}, L^1) Mastyło-Sinnamon

Non Calderón couples:

- $(L^1 + L^\infty, L^1 \cap L^\infty)$ Maligranda-Ovchinnikov
- $(C[0,1], \Lambda_{\theta}[0,1])$ Cwikel-Mastyło
- (E, L^{∞}) for non-strechable symmetric E Kalton

Sinnamon's question 2006 Is a dual couple of (Ces_{∞}, L^1) , i.e. $(\widetilde{L^1}, L^{\infty})$ also a Calderón couple?

Theorem (KL 2015) The couple ($\widetilde{L^1}, L^{\infty}$) is a Calderón couple. Sinnamon's question 2006 Is a dual couple of (Ces_{∞}, L^1) , i.e. $(\widetilde{L^1}, L^{\infty})$ also a Calderón couple? Theorem (KL 2015) The couple $(\widetilde{L^1}, L^{\infty})$ is a Calderón couple.

Sketch of proof

Let $f, g \in \widetilde{L^1} + L^\infty$ be such that $K(\cdot, f; \widetilde{L^1}, L^\infty) \leq K(\cdot, g; \widetilde{L^1}, L^\infty).$ We need to find $H : (\widetilde{L^1}, L^\infty) \to (\widetilde{L^1}, L^\infty)$ such that Hg = f

Scheme:

$$g \xrightarrow{S} \widetilde{g} \xrightarrow{T} \widetilde{f} \xrightarrow{M} f$$

$$(\widetilde{L^{1}}, L^{\infty}) \xrightarrow{S} (\widetilde{L^{1}}, L^{\infty}) \xrightarrow{T} (\widetilde{L^{1}}, L^{\infty}) \xrightarrow{M} (\widetilde{L^{1}}, L^{\infty})$$
int:

$$M = M_{f/\tilde{f}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of proof

Let $f, g \in \widetilde{L^1} + L^\infty$ be such that $K(\cdot, f; \widetilde{L^1}, L^\infty) \leq K(\cdot, g; \widetilde{L^1}, L^\infty).$ We need to find $H : (\widetilde{L^1}, L^\infty) \to (\widetilde{L^1}, L^\infty)$ such that Hg = f

Scheme:

Easy

$$g \xrightarrow{S} \widetilde{g} \xrightarrow{T} \widetilde{f} \xrightarrow{M} f$$
$$(\widetilde{L^{1}}, L^{\infty}) \xrightarrow{S} (\widetilde{L^{1}}, L^{\infty}) \xrightarrow{T} (\widetilde{L^{1}}, L^{\infty}) \xrightarrow{M} (\widetilde{L^{1}}, L^{\infty})$$
part:

$$M = M_{f/\tilde{f}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $g \in \tilde{L^0} = \{f \in L^0 : \tilde{f} \in L^0\}$. Then for each q > 1 there is a linear operator S defined on $\tilde{L^0}$ such that

$$Sg = \widetilde{g}$$

and for each $h \in \widetilde{L^0}$

 $|Sh| \leqslant q\tilde{h}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, for each B.f.s. X there holds $\|S\|_{\widetilde{X} \to \widetilde{X}} \leqslant q$.

Remark Using Hahn-Banach-Kantorovitch theorem one may take q=1

Proposition

Let $g \in \widetilde{L^0} = \{f \in L^0 : \tilde{f} \in L^0\}$. Then for each q > 1 there is a linear operator S defined on $\widetilde{L^0}$ such that

$$Sg = \widetilde{g}$$

and for each $h\in\widetilde{L^0}$

 $|Sh| \leqslant q\tilde{h}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, for each B.f.s. X there holds $\|S\|_{\widetilde{X} \to \widetilde{X}} \leqslant q$.

Remark

Using Hahn-Banach-Kantorovitch theorem one may take q = 1.

- For a = (a₁,..., a_n) ∈ ℝⁿ, a^{*} is the vector produced by permuting entries of |a| in nonincreasing order.
- Writing $b \prec a$, for $a, b \in \mathbb{R}^n$ we understand that

$$\sum_{i=1}^{k} b_i^* \leqslant \sum_{i=1}^{k} a_i^* \text{ for each } 0 < k \leqslant n,$$

A positive matrix A = (a_{ij})ⁿ_{i,j=1} (here positivity means that 0 ≤ a_{ij} for all i, j, or equivalently 0 ≤ Aa for each 0 ≤ a ∈ ℝⁿ) is called substochastic when

$$\sum_{j=1}^{n} a_{ij} \leq 1 \text{ and } \sum_{j=1}^{n} a_{ji} \leq 1 \text{ for each } 0 < i \leq n.$$
 (6)

- For a = (a₁,..., a_n) ∈ ℝⁿ, a^{*} is the vector produced by permuting entries of |a| in nonincreasing order.
- Writing $b \prec a$, for $a, b \in \mathbb{R}^n$ we understand that

$$\sum_{i=1}^k b_i^* \leqslant \sum_{i=1}^k a_i^* \text{ for each } 0 < k \leqslant n,$$

A positive matrix A = (a_{ij})ⁿ_{i,j=1} (here positivity means that 0 ≤ a_{ij} for all i, j, or equivalently 0 ≤ Aa for each 0 ≤ a ∈ ℝⁿ) is called substochastic when

$$\sum_{j=1}^{n} a_{ij} \leq 1 \text{ and } \sum_{j=1}^{n} a_{ji} \leq 1 \text{ for each } 0 < i \leq n.$$
 (6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For a = (a₁,..., a_n) ∈ ℝⁿ, a^{*} is the vector produced by permuting entries of |a| in nonincreasing order.
- Writing $b \prec a$, for $a, b \in \mathbb{R}^n$ we understand that

$$\sum_{i=1}^k b_i^* \leqslant \sum_{i=1}^k a_i^* \text{ for each } 0 < k \leqslant n,$$

A positive matrix A = (a_{ij})ⁿ_{i,j=1} (here positivity means that 0 ≤ a_{ij} for all i, j, or equivalently 0 ≤ Aa for each 0 ≤ a ∈ ℝⁿ) is called substochastic when

$$\sum_{j=1}^{n} a_{ij} \leq 1 \text{ and } \sum_{j=1}^{n} a_{ji} \leq 1 \text{ for each } 0 < i \leq n.$$
 (6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For a = (a₁,..., a_n) ∈ ℝⁿ, a^{*} is the vector produced by permuting entries of |a| in nonincreasing order.
- Writing $b \prec a$, for $a, b \in \mathbb{R}^n$ we understand that

$$\sum_{i=1}^k b_i^* \leqslant \sum_{i=1}^k a_i^* \text{ for each } 0 < k \leqslant n,$$

A positive matrix A = (a_{ij})ⁿ_{i,j=1} (here positivity means that 0 ≤ a_{ij} for all i, j, or equivalently 0 ≤ Aa for each 0 ≤ a ∈ ℝⁿ) is called substochastic when

$$\sum_{j=1}^{n} a_{ij} \leq 1 \text{ and } \sum_{j=1}^{n} a_{ji} \leq 1 \text{ for each } 0 < i \leq n.$$
 (6)

For
$$f, g \in L^1 + L^\infty$$
 we write $f \prec g$ when
$$\int_0^x f^*(t) dt \leqslant \int_0^x g^*(t) dt \text{ for each } x > 0.$$

•
$$K(x, f; L^1, L^\infty) = \int_0^x f^*(t) dt$$

▶ A linear positive operator (in the sense that $0 \le f$ implies $0 \le Tf$) defined on $L^1 + L^\infty$, mapping continuously L^1 into L^1 and L^∞ into L^∞ with both norms less or equal one is called **substochastic**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A positive T is substochastic if and only if $Tf \prec f$ for each $f \in L^1 + L^{\infty}$.

• For
$$f, g \in L^1 + L^\infty$$
 we write $f \prec g$ when

$$\int_0^x f^*(t)dt \leqslant \int_0^x g^*(t)dt \text{ for each } x > 0.$$

• $K(x, f; L^1, L^\infty) = \int_0^x f^*(t) dt$

A linear positive operator (in the sense that 0 ≤ f implies 0 ≤ Tf) defined on L¹ + L[∞], mapping continuously L¹ into L¹ and L[∞] into L[∞] with both norms less or equal one is called substochastic.

A positive T is substochastic if and only if $Tf \prec f$ for each $f \in L^1 + L^\infty$.

For
$$f, g \in L^1 + L^\infty$$
 we write $f \prec g$ when

$$\int_0^x f^*(t)dt \leqslant \int_0^x g^*(t)dt \text{ for each } x > 0.$$

•
$$K(x, f; L^1, L^\infty) = \int_0^x f^*(t) dt$$

A linear positive operator (in the sense that 0 ≤ f implies 0 ≤ Tf) defined on L¹ + L[∞], mapping continuously L¹ into L¹ and L[∞] into L[∞] with both norms less or equal one is called substochastic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A positive T is substochastic if and only if $Tf \prec f$ for each $f \in L^1 + L^\infty$.

For
$$f, g \in L^1 + L^\infty$$
 we write $f \prec g$ when

$$\int_0^x f^*(t) dt \leqslant \int_0^x g^*(t) dt \text{ for each } x > 0.$$

•
$$K(x, f; L^1, L^\infty) = \int_0^x f^*(t) dt$$

▶ A linear positive operator (in the sense that $0 \le f$ implies $0 \le Tf$) defined on $L^1 + L^\infty$, mapping continuously L^1 into L^1 and L^∞ into L^∞ with both norms less or equal one is called **substochastic**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A positive T is substochastic if and only if Tf ≺ f for each f ∈ L¹ + L[∞].

Theorem (Hardy-Littlewood-Pólya)

Let $0 \leq a, b \in \mathbb{R}^n$. If $b \prec a$ then there exists a substochastic matrix A such that Aa = b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Calderón)

Let $0 \leq f, g \in L^1 + L^{\infty}$ and suppose that $g \prec f$. Then there is a substochastic operator T such that Tf = g.

Theorem (Hardy-Littlewood-Pólya)

Let $0 \leq a, b \in \mathbb{R}^n$. If $b \prec a$ then there exists a substochastic matrix A such that Aa = b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Calderón)

Let $0 \leq f, g \in L^1 + L^\infty$ and suppose that $g \prec f$. Then there is a substochastic operator T such that Tf = g.

Proposition

Let X be a Banach function space and $f \in \widetilde{X} + L^{\infty}$. Then

$$K(t, f; \widetilde{X}, L^{\infty}) = K(t, \widetilde{g}; X, L^{\infty}).$$

Therefore $K(\cdot,f;\widetilde{L^1},L^\infty)\leqslant K(\cdot,g;\widetilde{L^1},L^\infty)$ means that

 $\tilde{f}\prec \tilde{g}$.

By Calderón theorem there is a substochastic operator T such that

$$T\tilde{g}=\tilde{f}.$$

But

$$T: (\widetilde{L^1}, L^\infty) \not\rightarrow (\widetilde{L^1}, L^\infty)!$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition

Let X be a Banach function space and $f \in \widetilde{X} + L^{\infty}$. Then

$$K(t, f; \widetilde{X}, L^{\infty}) = K(t, \widetilde{g}; X, L^{\infty}).$$

Therefore $K(\cdot, f; \widetilde{L^1}, L^\infty) \leqslant K(\cdot, g; \widetilde{L^1}, L^\infty)$ means that $\widetilde{f} \prec \widetilde{g}.$

By Calderón theorem there is a substochastic operator T such that

$$T\tilde{g}=\tilde{f}.$$

But

$$T: (\widetilde{L^1}, L^\infty)
ightarrow (\widetilde{L^1}, L^\infty)!$$

Proposition

Let X be a Banach function space and $f \in \widetilde{X} + L^{\infty}$. Then

$$K(t, f; \widetilde{X}, L^{\infty}) = K(t, \widetilde{g}; X, L^{\infty}).$$

Therefore $K(\cdot, f; \widetilde{L^1}, L^\infty) \leqslant K(\cdot, g; \widetilde{L^1}, L^\infty)$ means that

 $\tilde{f}\prec \tilde{g}.$

By Calderón theorem there is a substochastic operator T such that

$$T\tilde{g}=\tilde{f}.$$

But

 $T: (\widetilde{L^1}, L^\infty) \not\rightarrow (\widetilde{L^1}, L^\infty)!$

Proposition

Let X be a Banach function space and $f \in \widetilde{X} + L^{\infty}$. Then

$$K(t, f; \widetilde{X}, L^{\infty}) = K(t, \widetilde{g}; X, L^{\infty}).$$

Therefore $K(\cdot, f; \widetilde{L^1}, L^\infty) \leqslant K(\cdot, g; \widetilde{L^1}, L^\infty)$ means that

 $\tilde{f}\prec \tilde{g}.$

By Calderón theorem there is a substochastic operator T such that

$$T\tilde{g}=\tilde{f}.$$

But

$$T: (\widetilde{L^1}, L^\infty) \not\rightarrow (\widetilde{L^1}, L^\infty)!$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Definition

X, Y - Banach function spaces. An operator $T : X \mapsto Y$ is **monotone** if it is positive (i.e. $0 \le f$ implies $0 \le Tf$) and for each nonincreasing $0 \le f \in X$, Tf is also nonincreasing.

Proposition

If a bounded operator $T : X \to Y$ is monotone, then $T : \widetilde{X} \to \widetilde{Y}$ with $\|T\|_{\widetilde{X} \to \widetilde{Y}} \leq \|T\|_{X \to Y}$.

Definition

X, Y - Banach function spaces. An operator $T : X \mapsto Y$ is **monotone** if it is positive (i.e. $0 \le f$ implies $0 \le Tf$) and for each nonincreasing $0 \le f \in X$, Tf is also nonincreasing.

Proposition

If a bounded operator $T: X \to Y$ is monotone, then $T: \widetilde{X} \to \widetilde{Y}$ with $\|T\|_{\widetilde{X} \to \widetilde{Y}} \leq \|T\|_{X \to Y}$.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq a, b \in \mathbb{R}^n$ be both nonincreasing. If $b \prec a$ then there exists a substochastic monotone matrix A such that Aa = b.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq f, g \in L^1 + L^\infty$ be both nonincreasing and suppose that $g \prec f$. Then there is a substochastic monotone operator T such that Tf = g.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq a, b \in \mathbb{R}^n$ be both nonincreasing. If $b \prec a$ then there exists a substochastic monotone matrix A such that Aa = b.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq f, g \in L^1 + L^\infty$ be both nonincreasing and suppose that $g \prec f$. Then there is a substochastic monotone operator T such that Tf = g.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq a, b \in \mathbb{R}^n$ be both nonincreasing. If $b \prec a$ then there exists a substochastic monotone matrix A such that Aa = b.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq f, g \in L^1 + L^\infty$ be both nonincreasing and suppose that $g \prec f$. Then there is a substochastic monotone operator T such that Tf = g.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \le a, b \in \mathbb{R}^n$ be both nonincreasing. If $b \prec a$ then there exists a substochastic monotone matrix A such that Aa = b.

Theorem (Bennett-Sharpley 1986, KL 2015)

Let $0 \leq f, g \in L^1 + L^\infty$ be both nonincreasing and suppose that $g \prec f$. Then there is a substochastic monotone operator T such that Tf = g.

If (X_0, X_1) is a Calderón couple then also (X_0^p, X_1^p) is a Calderón couple for 1 .

Corollary

The couple $(\widetilde{L^p}, L^{\infty})$ is a Calderón couple.

Problem

Suppose (X_0, X_1) is a Calderón couple, where X_0, X_1 are B.f.s. and let $0 \le f, g \in X_0 + X_1$ be both nonincreasing with

 $K(\cdot, f; X_0, X_1) \leqslant K(\cdot, g; X_0, X_1).$

Then there exists a positive $T : (X_0, X_1) \rightarrow (X_0, X_1)$ satisfying Tg = f. May we choose T to be monotone?

◆□▶ ◆檀▶ ◆国▶ ◆国▶ - 国一

If (X_0, X_1) is a Calderón couple then also (X_0^p, X_1^p) is a Calderón couple for 1 .

Corollary The couple $(\widetilde{L^{p}}, L^{\infty})$ is a Calderón couple.

Problem

Suppose (X_0, X_1) is a Calderón couple, where X_0, X_1 are B.f.s. and let $0 \le f, g \in X_0 + X_1$ be both nonincreasing with

 $K(\cdot, f; X_0, X_1) \leq K(\cdot, g; X_0, X_1).$

Then there exists a positive $T : (X_0, X_1) \rightarrow (X_0, X_1)$ satisfying Tg = f. May we choose T to be monotone?

If (X_0, X_1) is a Calderón couple then also (X_0^p, X_1^p) is a Calderón couple for 1 .

Corollary

The couple $(\widetilde{L^{p}}, L^{\infty})$ is a Calderón couple.

Problem

Suppose (X_0, X_1) is a Calderón couple, where X_0, X_1 are B.f.s. and let $0 \le f, g \in X_0 + X_1$ be both nonincreasing with

$$K(\cdot, f; X_0, X_1) \leq K(\cdot, g; X_0, X_1).$$

Then there exists a positive $T : (X_0, X_1) \to (X_0, X_1)$ satisfying Tg = f. May we choose T to be monotone?

If (X_0, X_1) is a Calderón couple then also (X_0^p, X_1^p) is a Calderón couple for 1 .

Corollary

The couple $(\widetilde{L^{p}}, L^{\infty})$ is a Calderón couple.

Problem

Suppose (X_0, X_1) is a Calderón couple, where X_0, X_1 are B.f.s. and let $0 \le f, g \in X_0 + X_1$ be both nonincreasing with

$$K(\cdot, f; X_0, X_1) \leq K(\cdot, g; X_0, X_1).$$

Then there exists a positive $T : (X_0, X_1) \to (X_0, X_1)$ satisfying Tg = f. May we choose T to be monotone?

If (X_0, X_1) is a Calderón couple then also (X_0^p, X_1^p) is a Calderón couple for 1 .

Corollary

The couple $(\widetilde{L^{p}}, L^{\infty})$ is a Calderón couple.

Problem

Suppose (X_0, X_1) is a Calderón couple, where X_0, X_1 are B.f.s. and let $0 \le f, g \in X_0 + X_1$ be both nonincreasing with

$$K(\cdot, f; X_0, X_1) \leq K(\cdot, g; X_0, X_1).$$

Then there exists a positive $T : (X_0, X_1) \rightarrow (X_0, X_1)$ satisfying Tg = f. May we choose T to be monotone?

Let X, X_0, X_1 be B.f.s. with the Fatou property and such that C is bounded on them.

(a) If the dilation operator σ_{τ} is bounded on X_0 and X_1 for some $0<\tau<1,$ then

$$\varphi(CX_0, CX_1) = C[\varphi(X_0, X_1)]. \tag{7}$$

(b) If X is a symmetric space such that C is bounded on $\varphi(L^1, X)$, then $\varphi(L^1, CX) = C[\varphi(L^1, X)]. \tag{8}$

(c) If either X_0, X_1 are symmetric spaces, or C^* is bounded on both X_0 and X_1 , then $\sim \sim \sim$

$$\varphi(\widetilde{X}_0, \widetilde{X}_1) = [\varphi(X_0, X_1)]^{\sim}.$$
(9)

Let X, X_0, X_1 be B.f.s. with the Fatou property and such that C is bounded on them.

(a) If the dilation operator σ_{τ} is boundedon X_0 and X_1 for some $0<\tau<1,$ then

$$\varphi(CX_0, CX_1) = C[\varphi(X_0, X_1)]. \tag{7}$$

(b) If X is a symmetric space such that C is bounded on $\varphi(L^1, X)$, then $\varphi(L^1, CX) = C[\varphi(L^1, X)]. \quad (8)$

(c) If either X_0, X_1 are symmetric spaces, or C^* is bounded on both X_0 and X_1 , then $\sim \sim \sim$

$$\varphi(\widetilde{X}_0, \widetilde{X}_1) = [\varphi(X_0, X_1)]^{\sim}.$$
(9)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X, X_0, X_1 be B.f.s. with the Fatou property and such that C is bounded on them.

(a) If the dilation operator σ_{τ} is bounded on X_0 and X_1 for some $0<\tau<1,$ then

$$\varphi(CX_0, CX_1) = C[\varphi(X_0, X_1)]. \tag{7}$$

(b) If X is a symmetric space such that C is bounded on $\varphi(L^1, X)$, then $\varphi(L^1, CX) = C[\varphi(L^1, X)]. \quad (8)$

(c) If either X_0, X_1 are symmetric spaces, or C^* is bounded on both X_0 and X_1 , then $\sim \sim \sim$

$$\varphi(\widetilde{X_0},\widetilde{X_1}) = [\varphi(X_0,X_1)]^{\sim}.$$
(9)

Let $0 < \theta < 1$. Assume that X, X_0, X_1 are complex Banach function spaces with the Fatou property, $L^1 \cap L^{\infty} \hookrightarrow X$, and such that the operator $f \mapsto C|f|$ is bounded on all of them.

(a) If the dilation operator σ_a for some 0 < a < 1 is bounded on X_0 and X_1 and at least one of the spaces X_0 or X_1 is order continuous, then

$$[CX_0, CX_1]_{\theta} = C([X_0, X_1]_{\theta}).$$

(b) If X is a symmetric space, then

$$[L^1, CX]_{\theta} = C([L^1, X]_{\theta}).$$

(c) If at least one of the spaces X_0, X_1 is order continuous and either X_0 and X_1 are symmetric spaces or C^* is bounded on X_0 and X_1 , then

$$[\widetilde{X}_0,\widetilde{X}_1]_{\theta}=([X_0,X_1]_{\theta})^{\sim}.$$

Let $0 < \theta < 1$. Assume that X, X_0, X_1 are complex Banach function spaces with the Fatou property, $L^1 \cap L^{\infty} \hookrightarrow X$, and such that the operator $f \mapsto C[f]$ is bounded on all of them.

(a) If the dilation operator σ_a for some 0 < a < 1 is bounded on X_0 and X_1 and at least one of the spaces X_0 or X_1 is order continuous, then

$$[CX_0, CX_1]_{\theta} = C([X_0, X_1]_{\theta}).$$

(b) If X is a symmetric space, then

$$[L^1, CX]_{\theta} = C([L^1, X]_{\theta}).$$

(c) If at least one of the spaces X_0, X_1 is order continuous and either X_0 and X_1 are symmetric spaces or C^* is bounded on X_0 and X_1 , then

$$[\widetilde{X}_0,\widetilde{X}_1]_{\theta}=([X_0,X_1]_{\theta})^{\sim}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $0 < \theta < 1$. Assume that X, X_0, X_1 are complex Banach function spaces with the Fatou property, $L^1 \cap L^{\infty} \hookrightarrow X$, and such that the operator $f \mapsto C[f]$ is bounded on all of them.

(a) If the dilation operator σ_a for some 0 < a < 1 is bounded on X_0 and X_1 and at least one of the spaces X_0 or X_1 is order continuous, then

$$[CX_0, CX_1]_{\theta} = C([X_0, X_1]_{\theta}).$$

(b) If X is a symmetric space, then

$$[L^1, CX]_{\theta} = C([L^1, X]_{\theta}).$$

(c) If at least one of the spaces X_0, X_1 is order continuous and either X_0 and X_1 are symmetric spaces or C^* is bounded on X_0 and X_1 , then

$$[\widetilde{X_0},\widetilde{X_1}]_{\theta} = ([X_0,X_1]_{\theta})^{\sim}.$$

Let X_0, X_1 be B.f.s. with the Fatou property. If C and C^* are bounded on X_i for i = 0, 1 and F is an interpolation functor with the homogenity property, that is, $F(X_0(w), X_1(w)) = F(X_0, X_1)(w)$ for any weight w, then

$$F(CX_0, CX_1) = CF(X_0, X_1).$$
(10)

In particular,

$$(CX_0, CX_1)_G^K = C[(X_0, X_1)_G^K].$$
(11)

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで