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Cesàro operator
For f ∈ L1loc

Cf (x) =
1
x

∫ x

0
f (t)dt, 0 < x <∞. (1)

Copson operator
For f ∈ L1loc

C∗f (x) =

∫ ∞
x

f (t)

t
dt, 0 < x <∞. (2)

Nonincreasing majorant
For f ∈ L0

f̃ (x) = ess sup
x¬t

|f (t)|, 0 < x <∞. (3)
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Banach function space (B.f.s.)
A Banach space X ⊂ L0(R+) with

I if x ∈ X , y ∈ L0 and |y | ¬ |x | -a.e., then y ∈ X and ‖y‖X ¬ ‖x‖X
I there is x ∈ X such that x (t) > 0 a.e.

Cesàro space
For a B.f.s. X

CX = {f ∈ L0 : ‖f ‖CX = ‖C |f |‖X <∞}. (4)

Tandori space
For a B.f.s. X

X̃ = {f ∈ L0 : ‖f ‖
X̃

= ‖f̃ ‖X <∞}. (5)
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Ecxample

I For X = Lp with p > 1 we have CLp = Cesp

I For p > 1 we have Ces ′p = L̃p′

Theorem (Maligranda-KL 2015)
Let X be a B.f.s. with the Fatou property such that C : X → X is
bounded. If the dilation operator σb is bounded on X for some 0 < b < 1
then

(CX )′ = X̃ ′

.
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Interpolation spaces

I X is intermediate for a (compatible) couple of Banach spaces
(X0,X1) when X0 ∩ X1 ⊂ X ⊂ X0 + X1.

I T : (X0,X1)→ (X0,X1) when T is defined on X0 + X1 and

T : X0 → X0 and T : X1 → X1

with
‖T‖(X0,X1)→(X0,X1) = max{‖T‖X0→X0 , ‖T‖X1→X1}.

I X is interpolation space for the couple (X0,X1) (we write
X ∈ int(X0,X1)) when X is intermediate and for each
T : (X0,X1)→ (X0,X1) there holds

T : X → X .
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K-functional
For f ∈ X0 + X1 the K -functional of f with respect to the couple
(X0,X1) is defined as

K (t, f ;X0,X1) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1} for t > 0.

K-method of interpolation
For a given B.f.s. E over containing the function min{t, 1} define

(X0,X1)
K
E = {f ∈ X0 + X1 : K (·, f ,X0,X1) ∈ E}

with the norm
‖f ‖(X0,X1)KE = ‖K (·, f ,X0,X1)‖E .
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Calderón couple
A couple (X0,X1) is called Calderón couple when each interpolation
space may be generated by the K-method.

Theorem [Brudnyi-Kruglyak]
TFAE:

i) For X ∈ int(X0,X1) there is a B.f.s. E such that

(X0,X1)
K
E = X

ii) For each f , g ∈ X0 + X1

K (·, f ;X0,X1) ¬ K (·, g ;X0,X1) =⇒ ∃T :(X0,X1)→(X0,X1)Tg = f

iii) For each f , g ∈ X0 + X1 and X ∈ int(X0,X1)

K (·, f ;X0,X1) ¬ K (·, g ;X0,X1), g ∈ X =⇒ f ∈ X
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Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Calderón couples:

I (L1, L∞) - Calderón
I (L1, Lq) and (Lp, L∞) - Lorentz-Shimogaki
I (Lp, Lq) - Cwikel, Arazy-Cwikel, Sparr
I (E , L∞) for symmetric E which is strechable - Kalton
I (Hp,Hq) - Jones
I ((A0,A1)θ0,p0 , (A0,A1)θ1,p1) - Cwikel
I (Ces∞, L

1) - Mastyło-Sinnamon

Non Calderón couples:

I (L1 + L∞, L1 ∩ L∞) - Maligranda-Ovchinnikov
I (C [0, 1],Λθ[0, 1]) - Cwikel-Mastyło
I (E , L∞) for non-strechable symmetric E - Kalton



Sinnamon’s question 2006
Is a dual couple of (Ces∞, L

1), i.e. (L̃1, L∞) also a Calderón couple?

Theorem (KL 2015)
The couple (L̃1, L∞) is a Calderón couple.
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Sketch of proof

Let f , g ∈ L̃1 + L∞ be such that

K (·, f ; L̃1, L∞) ¬ K (·, g ; L̃1, L∞).

We need to find H : (L̃1, L∞)→ (L̃1, L∞) such that

Hg = f

Scheme:

g g̃ f̃ f

(L̃1, L∞) (L̃1, L∞) (L̃1, L∞) (L̃1, L∞)

S T M

S T M

Easy part:
M = Mf /f̃ .
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Looking for S

Proposition
Let g ∈ L̃0 = {f ∈ L0 : f̃ ∈ L0}. Then for each q > 1 there is a linear
operator S defined on L̃0 such that

Sg = g̃

and for each h ∈ L̃0

|Sh| ¬ qh̃.

In particular, for each B.f.s. X there holds ‖S‖
X̃→X̃

¬ q.

Remark
Using Hahn-Banach-Kantorovitch theorem one may take q = 1.
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Looking for T

I For a = (a1, ..., an) ∈ Rn, a∗ is the vector produced by permuting
entries of |a| in nonincreasing order.

I Writing b ≺ a, for a, b ∈ Rn we understand that

k∑
i=1

b∗i ¬
k∑

i=1

a∗i for each 0 < k ¬ n,

I A positive matrix A = (aij)
n
i,j=1 (here positivity means that 0 ¬ aij

for all i , j , or equivalently 0 ¬ Aa for each 0 ¬ a ∈ Rn) is called
substochastic when

n∑
j=1

aij ¬ 1 and
n∑

j=1

aji ¬ 1 for each 0 < i ¬ n. (6)

I A positive matrix A is substochastic if and only if Aa ≺ a for each
0 ¬ a ∈ Rn.
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Looking for T

I For f , g ∈ L1 + L∞ we write f ≺ g when∫ x

0
f ∗(t)dt ¬

∫ x

0
g∗(t)dt for each x > 0.

I K (x , f ; L1, L∞) =
∫ x
0 f
∗(t)dt

I A linear positive operator (in the sense that 0 ¬ f implies 0 ¬ Tf )
defined on L1 + L∞, mapping continuously L1 into L1 and L∞ into
L∞ with both norms less or equal one is called substochastic.

I A positive T is substochastic if and only if Tf ≺ f for each
f ∈ L1 + L∞.
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Looking for T

Theorem (Hardy-Littlewood-Pólya)
Let 0 ¬ a, b ∈ Rn. If b ≺ a then there exists a substochastic matrix A
such that Aa = b.

Theorem (Calderón)
Let 0 ¬ f , g ∈ L1 + L∞ and suppose that g ≺ f . Then there is a
substochastic operator T such that Tf = g .
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Definition
X ,Y - Banach function spaces. An operator T : X 7→ Y is monotone if
it is positive (i.e. 0 ¬ f implies 0 ¬ Tf ) and for each nonincreasing
0 ¬ f ∈ X , Tf is also nonincreasing.

Proposition
If a bounded operator T : X → Y is monotone, then T : X̃ → Ỹ with
‖T‖

X̃→Ỹ
¬ ‖T‖X→Y .
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Let 0 ¬ f , g ∈ L1 + L∞ be both nonincreasing and suppose that g ≺ f .
Then there is a substochastic monotone operator T such that Tf = g .
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Theorem (Avni-Cwikel 2013)
If (X0,X1) is a Calderón couple then also (X p

0 ,X
p
1 ) is a Calderón couple

for 1 < p <∞.

Corollary
The couple (L̃p, L∞) is a Calderón couple.

Problem
Suppose (X0,X1) is a Calderón couple, where X0,X1 are B.f.s. and let
0 ¬ f , g ∈ X0 + X1 be both nonincreasing with

K (·, f ;X0,X1) ¬ K (·, g ;X0,X1).

Then there exists a positive T : (X0,X1)→ (X0,X1) satisfying Tg = f .
May we choose T to be monotone?
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Theorem (Maligranda-KL 2015)
Let X ,X0,X1 be B.f.s. with the Fatou property and such that C is
bounded on them.

(a) If the dilation operator στ is boundedon X0 and X1 for some
0 < τ < 1, then

ϕ(CX0,CX1) = C [ϕ(X0,X1)]. (7)

(b) If X is a symmetric space such that C is bounded on ϕ(L1,X ), then

ϕ(L1,CX ) = C [ϕ(L1,X )]. (8)

(c) If either X0,X1 are symmetric spaces, or C∗ is bounded on both X0
and X1, then

ϕ(X̃0, X̃1) = [ϕ(X0,X1)]∼. (9)
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Theorem (Maligranda-KL 2015)
Let 0 < θ < 1. Assume that X ,X0,X1 are complex Banach function
spaces with the Fatou property, L1 ∩ L∞ ↪→ X , and such that the
operator f 7→ C |f | is bounded on all of them.

(a) If the dilation operator σa for some 0 < a < 1 is bounded on X0 and
X1 and at least one of the spaces X0 or X1 is order continuous, then

[CX0,CX1]θ = C ([X0,X1]θ).

(b) If X is a symmetric space, then

[L1,CX ]θ = C ([L1,X ]θ).

(c) If at least one of the spaces X0,X1 is order continuous and either X0
and X1 are symmetric spaces or C∗ is bounded on X0 and X1, then

[X̃0, X̃1]θ = ([X0,X1]θ)∼.
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Theorem (Maligranda-KL 2015)
Let X0,X1 be B.f.s. with the Fatou property. If C and C∗ are bounded on
Xi for i = 0, 1 and F is an interpolation functor with the homogenity
property, that is, F (X0(w),X1(w)) = F (X0,X1)(w) for any weight w ,
then

F (CX0,CX1) = CF (X0,X1). (10)

In particular,
(CX0,CX1)

K
G = C [(X0,X1)

K
G ]. (11)



Thank you!


