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Topic of the talk

@ Approximation of d-variate periodic functions in
e isotropic Sobolev spaces H*(T¢)

o Sobolev spaces of dominating mixed smoothness HS,. (T%)
e more general periodic spaces on the d-dimensional torus T¢

@ The error is measured in the L-norm and in the sup-norm.

@ Special emphasis on hidden constants, especially their dependence
on the smoothness parameter s > 0 and the dimension d € N.
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The talk is based on results from the following papers:

T. Kithn, W. Sickel and T. Ullrich,
Approximation numbers of Sobolev embeddings — Sharp constants and
tractability, J. Complexity 30 (2014), 95-116.

@ T. Kiihn, W. Sickel and T. Ullrich,
Approximation of mixed order Sobolev functions on the d-torus —
Asymptotics, preasymptotics and d-dependence,
Constr. Approx. (Online First 2015), arXiv:1312.6386

@ F. Cobos, T. Kiithn and W. Sickel,
Optimal approximation of multivariate periodic Sobolev functions in the
sup-norm, submitted 2014, arXiv:1505.02636

@ S. Mayer, T. Kiihn and T. Ullrich,
Counting via entropy: new preasymptotics for the approximation numbers of
Sobolev embeddings, submitted 2015, arXiv:1505.00631
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Approximation numbers

e Approximation numbers (also called linear widths)
of bounded linear operators T : X — Y in Banach spaces

an(T: X = Y):=inf{||T — Al : rank A < n}

@ Many nice properties
(1) Monotonicity IT||=a1(T)>ax(T)>..>0

(2) Additivity antk—1(S+ T) < an(S)+ aw(T)
(3) Multiplicativity antk-1(SoT) < ap(S)-aw(T)
(4) Rank property rank T <n== a,(T)=0

(5) Norming property an(id : ¢35 — ¢5) =1
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Relation to singular numbers

e Singular numbers (= singular values, known from SVD)
of compact linear operators T : H — F between two Hilbert spaces

Sn(T) ==/ An(T*T)

@ Schmidt representation of compact operators T : H — F
3 orthonormal systems (e,) C H and (f,) C F s.t.

Th_an (h,ex)f, forallheH.

@ Characterization by best approximations
so(T) =inf{|| T — Al| : rank A < n} = a,(T)

@ For operators on Hilbert spaces, approximation numbers coincide with
all other s-numbers (like Kolmogorov, Gelfand, Weyl numbers, ...)
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Interpretation in terms of algorithms

o Every operator A: X — Y of finite rank n can be written as
n
Ax =Y Li(x)y; forall xe X
j=1

with linear functionals L; € X* and vectors y; € Y.
~  As a linear algorithm using n arbitrary linear informations
@ worst-case error of the algorithm A

err*(A) == sup [[Tx — Ax|[ =T — Al
lIx[<1

@ n-th minimal worst-case error of the approximation problem for T
(w.r.t. linear algorithms and arbitrary linear information)

erry”’(T) := raniknjq err (A) = ap+1(T)
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Sobolev embeddings

o Well-known:

— For isotropic spaces on the d-dimensional torus T¢

Cod -4 < ap(ly: HS(TY) = Lp(T9)) < Cog - n—/

— For spaces of dominating mixed smoothness

Csd [Mr < ap(lg : H2, (T9) — Lo(T9)) < Cog - [Mr

n mix n

@ Almost nothing known:

How do the constants ¢, 4 and Cs 4 depend on s and d 777

This is essential for high-dimensional numerical problems, and
also for tractability questions in information-based complexity!

Thomas Kiithn (Leipzig) Approximation of multivariate functions Zielona Géra, 6 July 2015 7 /28



Some remarks

@ Of course, the constants heavily depend on the chosen norms.

~ First we have to fix (somehow natural) norms.
For all our norms, we will have norm one embeddings into Lg(’]I‘d).

@ For example, for smoothness s = 1, the asymptotic rates are

log n)d-1

Q= n_l/d and G, := (
n

In high dimensions, one has to wait exponentially long until these
rates become visible, as one can see from the following examples.
@ Isotropic case.
n =109 (very large) ~ «an= 55 (poor error estimate)
e Mixed case. (Dimension d + 1)
Even worse, n=d? ~ S, = (logd)? > 1 (trivial estimate)
@ n We need information on the constants,
and preasymptotic estimates (for small n)
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Natural norms

o H™(T9), with integer smoothness m € N

o Classical norm (all partial derivatives)

L) = (X0 107 L) 2)

jaf<m

e Modified classical norm (only highest derivatives in each coordinate)

| £ = (11F1L2(T%) H2+ZHW\L e
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Norms via Fourier coefficients

@ These norms can be rewritten in terms of Fourier coefficients of f,
1 .
f)i= 2 | f(x)e™d k ez’
()= g [, Fx)e e
via Parseval’s identity and ¢ (D“f) = (ik)*ck(f).
@ For the natural norm one has equivalence

1/2
d
|1~ | > (1+Z|k\ )" ex(F)
kezd
with equivalence constants independent on d.
@ For the modified natural norm one has even equality
1/2

d
LT = (D2 (143 ™) k()P
j=1

kezd
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Norms for fractional smoothness s > 0

o lets>0,deNand0< p < oo.
H=P(T?) consists of all f € Ly(T9) such that
s,p(md 2 2 1/2
1F1Ho2(T) ] = (3 wsp(kPle(F)R) " < oo,
kezd

_ d s/p

where the weights are ws p(k) := (1 + > \kj|p> :
j=1

@ For fixed s > 0 and d € N, all these norms are equivalent.
Clearly, the equivalence constants depend on d.
But all spaces H5P(T9), 0 < p < oo, coincide as vector spaces.

@ Very useful is the semigroup property of these weights,

ws p(k) = w1 p(k)°
which allows reduction to the case of smoothness s = 1.
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Relation to the classical norms

@ For the natural norm we have equivalence
d 2 md
L THP (T ~ (| £ [H™(T) ]|
with equivalence constants independent on d.

@ For the modified natural norm one has even equality

IEIHT@)" = || £ |H™2m(T9)]
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Norms on HS . (T9)

mix

@ lets>0,deNand 0< p< .
H>P (T9) consists of all f € Ly(T?) such that

S, le 1/2
[H=2(m) | = (D0 wi(k)Ple(F)2) T < oo,
kezd

where the weights are now wrX(k) == H (1 + |kj|P)s/P.
Jj=1
@ Again, for fixed s > 0 and d € N, all these norms are equivalent.
Clearly, the equivalence constants depend on d.

P d 1 H
But all spaces Hmlx(T ), 0 < p < o0, coincide as vector spaces.
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More general periodic spaces

e Given any weights w(k) > 1, k € 79, we define
Fq(w) as the space of all f € Lp(T9) such that

#1Fa)] = (3 wlkPleAR) " < oo

kezd
o Examples: all Sobolev spaces H*P(T9) and H? (T9)
@ We have compact embeddings
Fa(w) = L(TY) <+ |kllim 1/w(k) =0
—00
Fa(w) = Loo(T9) = Y 1/w(k)? < oc.
kezd
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Reduction to sequence spaces
Commutative diagram

Fa(w) L’ Lo(T)

lo(Z9)

lo(Z9)

Af = (w(k) a(f)keze + BE= X &e™  D(&) = (&/w(k))

kezd
A and B unitary operators  ~  ay(ly) = an(D) = sp(D) = o,

where (op)nen is the non-increasing rearrangement of (1/w(k)),czq-
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Isotropic Sobolev spaces

. . . 1
@ If (04)nen is the non-increasing rearrangement of <7W5’P(k)>kezd’ then

an(ly : HP(T9) — Ly(T9)) = o,

@ The "sequence” (ws p(k))xezd is piecewise constant, it attains all
values (1 + rP)¥/P, r € N, each of them at least 2d times, for
k= j:rel, trey. .. y :I:red.

o For r,d € N define N(r,d) := card{k € 9 : ", |kj|P < rP}.

If N(r —1,d) < n< N(r,d), then

an(lg - HP(T9) = Lo(T9)) = (1 + rP)~5/P.

@ In principle, this gives a,(/y4) for all n, but the exact computation of
the cardinalities N(r, d) is impossible. The hard work is to find good
estimates, using combinatorial and volume arguments.
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Asymptotic constants, n — oo

o Let BY denote the unit ball in (R?,||.||,). Using volume estimates,
we can show the existence of asymptotically optimal constants.

Theorem (KSU 2014)

Let 0 < s,p< oo and d € N. Then

lim n*/? a,(lg : HP(T?) — Lo(T9)) = vol(BJ)*/? ~ d—=/P

n—o0

@ The asymptotic constant is of order
d—%/2 for the natural norm (p = 2),
d~1/2 for the modified natural norm (p = 2s).
(In the paper only for p = 1,2, 2s, but proof works for arbitrary p.)
@ We get the correct order n=s/9 of the a, in n and the
exact decay rate d~%/P of the constants in d.

@ Polynomial decay in d of the constants helps in error estimates!
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Estimates for large n

Theorem (KSU 2014, case p = 1)

Let s >0 and n>69/3. Then

d=n~/9 < ap(ly : H¥Y(T9) = Lo(TY)) < (4e)°d~5n~%/7.

@ We have similar estimates for all other 0 < p < o0,
but for p = 1 the constants are nicer.

@ Note the correct d-dependence d—° of the constants!

@ Proof: via combinatorial estimates of the cardinalities N(r, d)
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Preasymptotic estimates — small n

Theorem (KSU 2014)

Letpzland2§n§2d. Then

log,(2d + 1))s .

(#)s < an(lg : HH(TY) = Lo(T9)) < ( log, n

2+ logy n

@ This estimate was shown by combinatorial arguments, which only
work for p = 1. Using a relation to entropy numbers, we could close
the gap between lower and upper bounds and treat arbitrary p's.

Theorem (KMU 2015)
Lets>0,0<p<ooand2<n<2? Then

log,(1 + d/ log, n)))S/P'

an(ly - H¥P(T9) = Lo(T%)) ~ ( =

(We have explicit expressions for the hidden constants.)
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Dominating mixed derivatives

@ The strategy for isotropic spaces can be used analogously in the
dominating mixed smoothness case.
Of course, the combinatorial estimates are different, and harder!

Theorem (KSU 2015 - asymptotic constants)
Let s > 0 and d € N. Then, for all 0 < p < oo, it holds

i n*an(ly : HI2(T9) — Lp(T9)) 2d  7°
n|—>rTc]>o (Iogn)s(d—l) o (d—].)!

@ In the paper this was shown only for p =1, 2, 2s,
but the proof works for all p.

@ Interesting fact: For all 0 < p < oo the limit is the same.

@ The asymptotic constant decays super-exponentially in d.
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Estimates for large n

@ As examples, we give some estimates for the norms with p = 1.
Theorem (KSU 2015)
Let s >0 and d € N. Then, for n > 279, it holds

d s n)s(d—1)
an(la = Mo (T9) = Lo(T9)) < [(di 1)!] e ,2

For n > (12e%)? we have, with c = 2+ng12'

an(l : Hys(T9) = Lo(T%)) 2 [3CT (log n)*(¢—D)

mix d! ns

@ For the constant in the upper estimate we still have
super-exponential decay in d.

(The only difference to the limit is 37 instead of 29.)
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Preasymptotic estimates, small n

Theorem (KSU 2015)

Lets>0andd eN, d>2. Then, for9 < n< d229-1 jt holds

2 2+Ios d
" " e g2
an(ld ; “n;llx(T ) 7 L2(T )) < < n )

@ Note that the bound is non-trivial for all n in the given range, since
e? < 0.

@ We have also similar (non-matching) lower estimates.
But they show, that one has to wait exponentially long until one can
"see” the correct asymptotic rate n~®, ignoring the log-terms.
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Approximation in the sup-norm

o [t is well-known that

d
H5(T9) — Loo(TY) = s> 5
s d d 1
> (T = Lo(TY) <= s> 5

@ The asymptotic behaviour of the approximation numbers is also
well-known, up to multiplicative constants,

an(ly - H(T9) = Loo(T?)) ~ n*/275/d

an(ld : rsnix(Td) - Loo(Td)) ~ n1/275(|0g n)s(d—l)

@ Problem. Find estimates for the hidden constants and the families of
norms, with parameters 0 < p < oc.
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From L,-approximation to L..-approximation

o General spaces Fy(w): all f € Lp(T9) with 3, w(k)?|ck(f)]? < o
Wiener algebra A(T9): all f € Ly(T9) with 3", |ck(f)] < o0
o Fy(w) = A(T9) / C(T9) / Lo(T9) <= 2 w(k) 2 < oo
keZ
In this case, the embeddings are even compact.
Theorem (CKS 2014)
Let Fa(w) = Loo(T?). Then

an(lg : Fg(w) = Loo(T%)) = (iaj(/d : Fa(w) — Lz(Td))2>1/2

J=n

The same holds for A(T9) and C(T9) instead of L. (T9).

v
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Sketch of proof

Upper estimate.

Fa(w) IL A(T9) — C(T9) — Loo(T)

-

0(z9) 25 029

Af = (w(k) e ieze + BE:= & &e®™ . DE) = (i)

kezd /
1/2
A anle) < A an(D) - 1B] = (252, 03)

where (o) nen is the non-increasing rearrangement of <L> I
keZ

w(k)
Remember: 0, = a,(lg : Fy(w) — La(T?))

Lower estimate: via absolutely 2-summing operators
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An example - application to HP(T9)

@ The relation

lim n*/9a,(ly - HP(T9) = L,(T%)) = vol(B,‘i’)s/d

n—o0

implies

Theorem (CKS 2014, asymptotic constants - isotropic spaces)
LetdeN,s>d/2and0< p<oo. Then

d
. d—1/2 . s, d dyy _ d\s/d
lim n*/42a,(Ig : H9P(T9) = Loo(T9)) = ’/2s—d -vol(BZ)*/

@ Shift in the exponent of n by % additional correction factor ﬁ.

@ The same holds for the target space C(T9),
and also for the Wiener algebra A(T¢).

@ Similarly one can translate estimates of a,, for large n / small n.
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Final remarks

@ All this can be done also for Sobolev spaces of dominating mixed
smoothness. For example, the relation

nfap(lg - HYE(T) — L(T9)) [ 24 1°
tin S (@

implies the following

Theorem (CKS 2014, asymptotic constants - mixed spaces)
Letd €N, s>1/2 and0 < p < oo. Then

i ns12a,(lg : H2P (T9) — Loo(T9)) 1 2d 7°
m e
— (log n)s(d—1) V2s—1 |(d—-1)!

@ Again: shift in the exponent by % and additional correction factor.

@ Open questions: Preasymptotic estimates? Tractability?
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Thank you for your attention!

Thomas Kiithn (Leipzig) Approximation of multivariate functions Zielona Géra, 6 July 2015 28 /28



