Sobolev spaces on metrizable groups

Tomasz Kostrzewa Warsaw University of Technology

July 7, 2015

1 / 27

Image: A mathematical states and a mathem

Motivations

Sobolev space

• \mathbb{R}^n - spaces $W^{k,p}$ and H^s

・ロト ・回ト ・ヨト

문 문 문

Motivations

Sobolev space

- \mathbb{R}^n spaces $W^{k,p}$ and H^s
- Riemannian manifolds

・ロト ・同ト ・ヨト

문 🕨 문

Motivations

Sobolev space

- \mathbb{R}^n spaces $W^{k,p}$ and H^s
- Riemannian manifolds
- \mathbb{T}^n spaces defined by the Fourier transform

< □ > < □ > < □

Motivations

Sobolev space

- \mathbb{R}^n spaces $W^{k,p}$ and H^s
- Riemannian manifolds
- \mathbb{T}^n spaces defined by the Fourier transform
- Metric spaces Hajłasz and Newtonian spaces

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivations

Sobolev space

- \mathbb{R}^n spaces $W^{k,p}$ and H^s
- Riemannian manifolds
- \mathbb{T}^n spaces defined by the Fourier transform
- Metric spaces Hajłasz and Newtonian spaces
- Heisenberg groups and other special cases of locally compact groups

Image: A math a math

Outline

Why locally compact abelian groups?

・ロト ・回ト ・ヨト

臣

Outline

Why locally compact abelian groups?

2 Sobolev spaces on locally compact abelian groups

Outline

Why locally compact abelian groups?

2 Sobolev spaces on locally compact abelian groups

Outline

Why locally compact abelian groups?

2 Sobolev spaces on locally compact abelian groups

What if we had a metric?

Why locally compact abelian groups?

Sobolev spaces on locally compact abelian groups What if we had a metric? What's next?

Topological groups

イロン イヨン イヨン イヨン

Topological groups

Definition

We say that (G, ·, e,⁻¹) together with a topology τ ⊂ 2^G is a topological group if both maps

$$f: G \times G \longrightarrow G;$$
 $(a, b) \longmapsto a \cdot b,$
 $^{-1}: G \longrightarrow G;$ $a \longmapsto a^{-1}$

are continuous.

(日) (四) (日) (日) (日)

Topological groups

Definition

We say that (G, ·, e,⁻¹) together with a topology τ ⊂ 2^G is a topological group if both maps

$$: G \times G \longrightarrow G;$$
 $(a, b) \longmapsto a \cdot b;$
 $^{-1}: G \longrightarrow G;$ $a \longmapsto a^{-1}$

are continuous.

• We say that a topological space is **locally compact** if every point has a neighbourhood which closure is compact.

Topological groups

Definition

We say that (G, ·, e,⁻¹) together with a topology τ ⊂ 2^G is a topological group if both maps

$$: G \times G \longrightarrow G;$$
 $(a, b) \longmapsto a \cdot b;$
 $^{-1}: G \longrightarrow G;$ $a \longmapsto a^{-1}$

are continuous.

- We say that a topological space is **locally compact** if every point has a neighbourhood which closure is compact.
- Locally compact group is a topological group which is a locally compact Hausdorff space.

Locally compact groups

Example

•
$$(\mathbb{R}^{n}, +, -, 0),$$

イロン イヨン イヨン イヨン

Э

Locally compact groups

Example

•
$$(\mathbb{R}^{n}, +, -, 0)$$
,

•
$$(\mathbb{R} \setminus \{0\}, \cdot, ^{-1}, 1),$$

イロン イヨン イヨン イヨン

Э

Locally compact groups

Example

• $(\mathbb{R}^{n}, +, -, 0),$

•
$$(\mathbb{R} \setminus \{0\}, \cdot, ^{-1}, 1),$$

• $(\mathbb{Q}, +, -, 0)$ (with discrete topology),

・ロト ・ 日 ・ ・ ヨ ト

문 🕨 문

Locally compact groups

Example

• $(\mathbb{R}^{n}, +, -, 0),$

•
$$(\mathbb{R} \setminus \{0\}, \cdot, ^{-1}, 1),$$

- $(\mathbb{Q}, +, -, 0)$ (with discrete topology),
- Lie groups,

・ロト ・回ト ・ヨト

글 > 글

Locally compact groups

Example

• $(\mathbb{R}^{n}, +, -, 0)$,

•
$$(\mathbb{R} \setminus \{0\}, \cdot, ^{-1}, 1),$$

- ($\mathbb{Q}, +, -, 0$) (with discrete topology),
- Lie groups,
- $(\mathbb{Q}_p, +, -, 0)$ (p is a prime number).

イロン イロン イヨン イ

글 > 글

The Haar measure

Definition

Let G be a locally compact group. We say that measure μ on G is left-invariant if

$$\mu(xA) = \mu(A)$$

for all measurable sets A and all $x \in G$.

The Haar measure

Definition

Let ${\cal G}$ be a locally compact group. We say that measure μ on ${\cal G}$ is left-invariant if

$$\mu(xA) = \mu(A)$$

for all measurable sets A and all $x \in G$.

Theorem

Let G be a locally compact group. Then there exists exactly one non-zero, left-invariant Radon measure μ .

The Dual group

Definition

Let G be a locally compact abelian group. The set \widehat{G} (or G^{\wedge}) of all continuous homomorphisms from G to $S^1 \subset \mathbb{C}$ is called a dual group of G. We equip it with pointwise operations and compact-open topology i.e. topology of uniform convergence on compact sets.

The Dual group

Definition

Let G be a locally compact abelian group. The set \widehat{G} (or G^{\wedge}) of all continuous homomorphisms from G to $S^1 \subset \mathbb{C}$ is called a dual group of G. We equip it with pointwise operations and compact-open topology i.e. topology of uniform convergence on compact sets.

Example

$$\widehat{\mathbb{R}^n} \cong \mathbb{R}^n, \quad \widehat{\mathbb{T}^n} \cong \mathbb{Z}^n, \quad \widehat{\mathbb{Z}^n} \cong \mathbb{T}^n, \quad \widehat{\mathbb{Q}_p} \cong \mathbb{Q}_p.$$

The Plancherel Theorem

Fourier transform

Let G be a locally compact abelian group. A Fourier transform of $f \in L^1(G)$ is a map $\hat{f} : G^{\wedge} \to \mathbb{C}$ defined by the formula

$$\hat{f}(\chi) = \int_{\mathcal{G}} \overline{\chi(x)} f(x) \, d\mu(x).$$

The Plancherel Theorem

Fourier transform

Let G be a locally compact abelian group. A Fourier transform of $f \in L^1(G)$ is a map $\hat{f} : G^{\wedge} \to \mathbb{C}$ defined by the formula

$$\hat{f}(\chi) = \int_{G} \overline{\chi(x)} f(x) d\mu(x).$$

Theorem

Let G be a locally compact abelian group with a Haar measure μ . Then there exists exactly one Haar measure on G^{\wedge} , called Plancherel measure, such that for all $f \in L^1(G) \cap L^2(G)$ we have

$$||f||_{L^2(G)} = ||\hat{f}||_{L^2(G^{\wedge})}$$

Example 1

イロン イヨン イヨン イヨン

Example 1

•
$$H^{s}(\mathbb{R}^{n}) = \left\{ f \in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} \left(1 + \|\xi\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} d\xi < +\infty \right\}$$

where $\|\xi\|^{2} := \xi_{1}^{2} + \ldots + \xi_{n}^{2}$.

イロン イヨン イヨン イヨン

Example 1

•
$$H^{s}(\mathbb{R}^{n}) = \left\{ f \in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} \left(1 + \|\xi\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} d\xi < +\infty \right\}$$

where $\|\xi\|^{2} := \xi_{1}^{2} + \ldots + \xi_{n}^{2}$.
• $H^{s}(\mathbb{T}^{n}) = \left\{ f \in L^{2}(\mathbb{T}^{n}) : \sum_{k} \left(1 + \|\xi\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} < +\infty \right\}$

•
$$H^{s}(\mathbb{T}^{n}) = \left\{ f \in L^{2}(\mathbb{T}^{n}) : \sum_{\xi \in \mathbb{Z}^{n}} \left(1 + \left\|\xi\right\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} < +\infty \right\}$$

where $\left\|\xi\right\| := \xi_{1}^{2} + \ldots + \xi_{n}^{2}$

イロン イヨン イヨン イヨン

Example 1

$$H^{s}(\mathbb{Q}_{p}^{n}) = \left\{ f \in L^{2}(\mathbb{Q}_{p}^{n}) : \int_{\mathbb{Q}_{p}^{n}} \left(1 + \|\xi\|_{p}^{2}\right)^{s} \left|\hat{f}(\xi)\right|^{2} d\xi < +\infty \right\}$$

where $\|\xi\|_p$ is a *p*-adic norm.

・ロト ・日本・ ・ ヨト・

< ≣⇒

臣

Sobolev Spaces

Definition

Let G be a locally compact abelian group, $s \ge 0$ and $\gamma: G^{\wedge} \to [0, +\infty)$. We say that $f \in L^2(G)$ belongs to Sobolev space $H^s_{\gamma}(G)$ if

$$\int\limits_{G^{\wedge}} (1+\gamma^2(\xi))^s |\widehat{f}(\xi)|^2 d\mu(\xi) < \infty.$$

イロト イポト イヨト イヨト

э

Sobolev Spaces

Definition

Let G be a locally compact abelian group, $s \ge 0$ and $\gamma: G^{\wedge} \to [0, +\infty)$. We say that $f \in L^2(G)$ belongs to Sobolev space $H^s_{\gamma}(G)$ if

$$\int_{G^{\wedge}} (1+\gamma^2(\xi))^s |\hat{f}(\xi)|^2 d\mu(\xi) < \infty.$$

We equip it with a norm

$$\|f\|_{H^s_{\gamma}(G)} := \sqrt{\int\limits_{G^{\wedge}} (1+\gamma^2(\xi))^s |\hat{f}(\xi)|^2 d\mu(\xi)}.$$

イロト イポト イヨト イヨト

э

Continuous embeddings 1

Theorem (Górka, Reyes)

Let G be a locally compact abelian group.

• If $s > \sigma$, then

 $H^s_{\gamma}(G) \hookrightarrow H^{\sigma}_{\gamma}(G).$

문 🕨 문

Continuous embeddings 1

Theorem (Górka, Reyes)

Let G be a locally compact abelian group.

• If $s > \sigma$, then

 $H^s_{\gamma}(G) \hookrightarrow H^{\sigma}_{\gamma}(G).$

• If
$$(1+\gamma^2(.))^{-1}\in L^s(G^\wedge)$$
, then $H^s_\gamma(G)\hookrightarrow C(G).$

문 문

Continuous embeddings 2

Theorem (Reyes, Górka)

Let G be a locally compact abelian group.

• If $\alpha > s$ and $(1 + \gamma^2(.))^{-1} \in L^{lpha}(G^{\wedge})$, then

$$H^{s}_{\gamma}(G) \hookrightarrow L^{\alpha^{*}}(G),$$

where
$$\alpha^* = \frac{2\alpha}{\alpha - s}$$
.

▲ @ ▶ < ≥ ▶</p>

Compact embeddings

Theorem (Górka, K., Reyes)

Let G be a compact abelian group.

• If $(1+\gamma^2(\cdot))^{-1}\in L^{lpha}(\mathsf{G}^\wedge)$ and s>lpha, then

$$H^{s}_{\gamma}(G) \hookrightarrow \subset C(G).$$

• If $(1+\gamma^2(.))^{-1}\in L^{lpha}(G^{\wedge})$ and s<lpha, then

$$H^s_{\gamma}(G) \hookrightarrow L^p(G)$$

for all $p < \alpha^* = \frac{2\alpha}{\alpha - s}$.

▲ 同 ▶ → モ 臣 ▶

Example 1 again

•
$$H^{s}(\mathbb{R}^{n}) = \left\{ f \in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} \left(1 + \|\xi\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} d\xi < +\infty \right\}$$

• $H^{s}(\mathbb{T}^{n}) = \left\{ f \in L^{2}(\mathbb{T}^{n}) : \sum_{\xi \in \mathbb{Z}^{n}} \left(1 + \|\xi\|^{2} \right)^{s} \left| \hat{f}(\xi) \right|^{2} < +\infty \right\}$
• $H^{s}(\mathbb{Q}_{p}^{n}) = \left\{ f \in L^{2}(\mathbb{Q}_{p}^{n}) : \int_{\mathbb{Q}_{p}^{n}} \left(1 + \|\xi\|^{2}_{p} \right)^{s} \left| \hat{f}(\xi) \right|^{2} d\xi < +\infty \right\}$

・ロト ・日本 ・モート ・モート

Measures of balls

Definition

Let G be a locally compact abelian group and μ a Haar measure on G. We say that a metric $d : G \times G \to \mathbb{R}$ is upper- β regular if:

G is not discrete and there exists a constant D > 0, such that for all r > 0 we have

 $\mu(B(e,r)) \leq Dr^{\beta}.$

イロト イポト イヨト イヨト

臣

Measures of balls

Definition

Let G be a locally compact abelian group and μ a Haar measure on G. We say that a metric $d : G \times G \to \mathbb{R}$ is upper- β regular if:

G is not discrete and there exists a constant D > 0, such that for all r > 0 we have

$$\mu(B(e,r)) \leq Dr^{\beta}.$$

 G is discrete and there exists R₀ > 0 and D > 0 such that B(e, R₀) = {e} and for r ≥ R₀

$$\mu(B(e,r)) \leq Dr^{\beta}$$

イロト イヨト イヨト

∢ ≣⇒

The important lemma

Lemma (Górka, K.)

Let G be a locally compact abelian group and $\beta > 0$. Let $\gamma(\xi) = \hat{d}(\xi, \hat{e})$ for all $\xi \in G^{\wedge}$, where \hat{d} is a metric on G^{\wedge} , which is upper β -regular. Then for all $\alpha > \frac{\beta}{2}$ inequality

$$\left\|\frac{1}{1+\gamma^2(.)}\right\|_{L^{\alpha}(\mathcal{G}^{\wedge})}^{lpha} \leq D(lpha,eta),$$

holds, i.e.

$$(1+\gamma^2(.))^{-1}\in L^{\alpha}(G^{\wedge}).$$

Embeddings into L^p spaces - metric case

Theorem (Górka, K.)

Let G be a locally compact abelian group and $\beta > 0$. Suppose that $\gamma(\xi) = \hat{d}(\xi, \hat{e})$, where \hat{d} is a metric on G^{\wedge} , which is upper β -regular. If $0 < s < \frac{\beta}{2}$, then for all $\alpha > \frac{\beta}{2}$ the following embedding holds

$$H^{s}_{\gamma}(G) \hookrightarrow L^{\alpha^{*}}(G),$$

where $\alpha^* = \frac{2\alpha}{\alpha-s}$.

Dual metrics

Definition

Let G be a locally compact abelian group. We say that metrics $d: G \times G \to \mathbb{R}$ and $\hat{d}: G^{\wedge} \times G^{\wedge} \to \mathbb{R}$ are dual metrics if:

• d generates the topology of G and \hat{d} generates the compact-open topology of G^{\wedge} ,

Dual metrics

Definition

Let G be a locally compact abelian group. We say that metrics $d: G \times G \to \mathbb{R}$ and $\hat{d}: G^{\wedge} \times G^{\wedge} \to \mathbb{R}$ are dual metrics if:

- d generates the topology of G and \hat{d} generates the compact-open topology of G^{\wedge} ,
- 2 for each character $\xi \in G^{\wedge}$ and every $x, y \in G$ we have

$$|\xi(x)-\xi(y)|\leq \hat{d}(\xi,\hat{e})d(x,y).$$

Embeddings into Hölder spaces

Theorem (Górka, K.)

Let G be a locally compact abelian group such that d and \hat{d} are dual metrics and \hat{d} is upper β -regular. Furthermore, let us assume that $\gamma = \hat{d}$ and that $s = \alpha + \frac{\beta}{2}$ for some $\alpha \in (0, 1)$. Then, $H^s_{\gamma}(G) \hookrightarrow C^{0,\alpha}(G)$. Moreover, there exists C > 0 such that inequality

$$\|u\|_{C^{0,\alpha}(G)} \leq C \|u\|_{H^s_{\gamma}(G)}$$

holds for all $u \in H^s_{\gamma}(G)$, where

$$||u||_{C^{0,\alpha}(G)} = ||u||_{C(G)} + \sup_{x \neq y \in G} \frac{|u(x) - u(y)|}{d(x,y)^{\alpha}}.$$

Embeddings into Hölder spaces - p-adic numbers

Theorem (Górka, K.)

Suppose that $s = \alpha + \frac{n}{2}$ for some $\alpha \in (0, 1)$. Then

$$H^{s}_{\hat{d}}(\mathbb{Q}^{n}_{p}) \hookrightarrow C^{0,\alpha}(\mathbb{Q}^{n}_{p}).$$

Moreover, there exists C > 0 such that inequality

$$\|u\|_{C^{0,\alpha}(\mathbb{Q}_p^n)} \leq C \|u\|_{H^s_{\hat{d}}(\mathbb{Q}_p^n)}$$

holds for all $u \in H^s_{\hat{d}}(\mathbb{Q}_p^n)$.

Limiting case of embeddings

We already know that

< 17 × 4

Limiting case of embeddings

We already know that

• For $s < rac{\beta}{2}$ we have $H^s_{\gamma}(G) \hookrightarrow L^{\alpha*}(G)$.

Limiting case of embeddings

We already know that

- For $s < rac{\beta}{2}$ we have $H^s_{\gamma}(G) \hookrightarrow L^{\alpha*}(G)$.
- For $s > \frac{\beta}{2}$ we have $H^s_{\gamma}(G) \hookrightarrow C^{0,\alpha}(G)$.

Limiting case of embeddings

We already know that

- For $s < rac{\beta}{2}$ we have $H^s_{\gamma}(G) \hookrightarrow L^{\alpha*}(G)$.
- For $s > \frac{\beta}{2}$ we have $H^s_{\gamma}(G) \hookrightarrow C^{0,\alpha}(G)$.
- What happens if $s = \frac{\beta}{2}$?

Trudinger-Moser Inequality

Theorem (Górka, K.)

Let G be a locally compact abelian group. Suppose that \hat{d} is a metric on G^{\wedge} with a polynomial growth of degree β and that $\gamma = \hat{d}$. Then there exist universal constants $C = C(\beta) > 0, \alpha > 0$ such that

$$\int_{G} \left(e^{\alpha \left(\frac{u(x)}{\|u\|} \right)^2} - 1 \right) d\mu_G(x) \leq C,$$

where $\|u\| = \|u\|_{H^{\frac{\beta}{2}}_{\gamma}(G)}$.

Trudinger-Moser Inequality - *p*-adic numbers

Theorem (Górka, K.)

There exist universal constants C = C(n) > 0, $\alpha > 0$ such that

$$\int_{\mathbb{Q}_p^n} \left(e^{\alpha \left(\frac{u(x)}{\|\|u\|} \right)^2} - 1 \right) d\mu_{\mathbb{Q}_p^n}(x) \leq C,$$

where $||u|| = ||u||_{H^{\frac{n}{2}}_{\hat{d}}}$.

A (1) > (1) > (1)

Open problems

 Classify locally compact abelian and metrizable groups for which H^s_γ(G), Hajłasz spaces and Newtonian spaces coincide.

A (1) > (1) > (1)

Open problems

- Classify locally compact abelian and metrizable groups for which H^s_γ(G), Hajłasz spaces and Newtonian spaces coincide.
- What are necessary conditions for which dual metrics exist?

Open problems

- Classify locally compact abelian and metrizable groups for which H^s_γ(G), Hajłasz spaces and Newtonian spaces coincide.
- 2 What are necessary conditions for which dual metrics exist?
- Subscription Characterize endomorphisms of Sobolev spaces $H^s_{\gamma}(G)$.

Thank you for your attention

Bibliography I

- Górka, T. Kostrzewa. Sobolev spaces on metrizable groups. *Ann. Acad. Sci. Fenn. Math*, Vol. 40 No. 2, 2015.
- P. Górka, T. Kostrzewa, E. G. Reyes. The Rellich lemma on compact abelian groups and equations of infinite order. Int. J. Geoem. Meth. Mod. Phys., Vol.10, No.2, 2013.
- P. Górka, T. Kostrzewa, E. G. Reyes. Sobolev spaces on locally compact abelian groups: compact embeddings and local spaces. J. Funct. Spaces 2014, Art. ID 404738, 6 pp.
- P. Górka and E.G. Reyes. Sobolev spaces on locally compact abelian groups and the bosonic string equation. J. Aust. Math. Soc. to appear.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A