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Topological groups

De�nition

We say that (G , ·, e,−1 ) together with a topology τ ⊂ 2G is a

topological group if both maps

· : G × G −→ G ; (a, b) 7−→ a · b,
−1 : G −→ G ; a 7−→ a−1

are continuous.

We say that a topological space is locally compact if every

point has a neighbourhood which closure is compact.

Locally compact group is a topological group which is a locally

compact Hausdor� space.
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Locally compact groups

Example

(Rn,+,−, 0),

(R \ {0}, ·,−1 , 1),
(Q,+,−, 0) (with discrete topology),

Lie groups,

(Qp,+,−, 0) (p is a prime number).
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The Haar measure

De�nition

Let G be a locally compact group. We say that measure µ on G is

left-invariant if

µ(xA) = µ(A)

for all measurable sets A and all x ∈ G .

Theorem

Let G be a locally compact group. Then there exists exactly one

non-zero, left-invariant Radon measure µ.
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The Dual group

De�nition

Let G be a locally compact abelian group. The set Ĝ (or G∧) of all
continuous homomorphisms from G to S1 ⊂ C is called a dual

group of G . We equip it with pointwise operations and

compact-open topology i.e. topology of uniform convergence on

compact sets.

Example

R̂n ∼= Rn, T̂n ∼= Zn, Ẑn ∼= Tn, Q̂p
∼= Qp.
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The Plancherel Theorem

Fourier transform

Let G be a locally compact abelian group. A Fourier transform of

f ∈ L1(G ) is a map f̂ : G∧ → C de�ned by the formula

f̂ (χ) =

∫
G

χ(x)f (x) dµ(x).

Theorem

Let G be a locally compact abelian group with a Haar measure µ.
Then there exists exactly one Haar measure on G∧, called
Plancherel measure, such that for all f ∈ L1(G ) ∩ L2(G ) we have

‖f ‖L2(G) = ‖f̂ ‖L2(G∧).
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Example 1

Hs(Rn) =

{
f ∈ L2(Rn) :

∫
Rn

(
1+ ‖ξ‖2

)s ∣∣∣f̂ (ξ)∣∣∣2 dξ < +∞
}

where ‖ξ‖2 := ξ21 + . . .+ ξ2n.

Hs(Tn) =

{
f ∈ L2(Tn) :

∑
ξ∈Zn

(
1+ ‖ξ‖2

)s ∣∣∣f̂ (ξ)∣∣∣2 < +∞

}

where ‖ξ‖ := ξ21 + . . .+ ξ2n
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Example 1

(Zuniga-Galindo, Galeano-Penaloza)

Hs(Qn
p) =

f ∈ L2(Qn
p) :

∫
Qn
p

(
1+ ‖ξ‖2p

)s ∣∣∣f̂ (ξ)∣∣∣2 dξ < +∞


where ‖ξ‖p is a p-adic norm.
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Sobolev Spaces

De�nition

Let G be a locally compact abelian group, s ≥ 0 and

γ : G∧ → [0,+∞). We say that f ∈ L2(G ) belongs to Sobolev

space Hs
γ(G ) if ∫

G∧

(1+ γ2(ξ))s |f̂ (ξ)|2dµ(ξ) <∞.

We equip it with a norm

‖f ‖Hs
γ(G) :=

√√√√∫
G∧

(1+ γ2(ξ))s |f̂ (ξ)|2dµ(ξ).
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Continuous embeddings 1

Theorem (Górka, Reyes)

Let G be a locally compact abelian group.

If s > σ, then
Hs
γ(G ) ↪→ Hσ

γ (G ).

If (1+ γ2(.))−1 ∈ Ls(G∧), then

Hs
γ(G ) ↪→ C (G ).
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Continuous embeddings 2

Theorem (Reyes, Górka)

Let G be a locally compact abelian group.

If α > s and (1+ γ2(.))−1 ∈ Lα(G∧), then

Hs
γ(G ) ↪→ Lα

∗
(G ),

where α∗ = 2α
α−s .
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What if we had a metric?
What's next?

Compact embeddings

Theorem (Górka, K., Reyes)

Let G be a compact abelian group.

If (1+ γ2(·))−1 ∈ Lα(G∧) and s > α, then

Hs
γ(G ) ↪→↪→ C (G ).

If (1+ γ2(.))−1 ∈ Lα(G∧) and s < α, then

Hs
γ(G ) ↪→↪→ Lp(G )

for all p < α∗ = 2α
α−s .

14 / 27
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Example 1 again

Hs(Rn) =

f ∈ L2(Rn) :

∫
Rn

(
1+ ‖ξ‖2

)s ∣∣∣f̂ (ξ)∣∣∣2 dξ < +∞


Hs(Tn) =

f ∈ L2(Tn) :
∑
ξ∈Zn

(
1+ ‖ξ‖2

)s ∣∣∣f̂ (ξ)∣∣∣2 < +∞


Hs(Qn

p) =

f ∈ L2(Qn
p) :

∫
Qn
p

(
1+ ‖ξ‖2p

)s ∣∣∣f̂ (ξ)∣∣∣2 dξ < +∞
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Measures of balls

De�nition

Let G be a locally compact abelian group and µ a Haar measure on

G. We say that a metric d : G × G → R is upper-β regular if:

1 G is not discrete and there exists a constant D > 0, such that

for all r > 0 we have

µ(B(e, r)) ≤ Drβ.

2 G is discrete and there exists R0 > 0 and D > 0 such that

B(e,R0) = {e} and for r ≥ R0

µ(B(e, r)) ≤ Drβ.
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The important lemma

Lemma (Górka, K.)

Let G be a locally compact abelian group and β > 0. Let

γ(ξ) = d̂(ξ, ê) for all ξ ∈ G∧, where d̂ is a metric on G∧, which is

upper β-regular. Then for all α > β
2
inequality∥∥∥∥ 1

1+ γ2(.)

∥∥∥∥α
Lα(G∧)

≤ D(α, β),

holds, i.e. (
1+ γ2(.)

)−1 ∈ Lα(G∧).
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Embeddings into Lp spaces - metric case

Theorem (Górka, K.)

Let G be a locally compact abelian group and β > 0. Suppose that

γ(ξ) = d̂(ξ, ê), where d̂ is a metric on G∧, which is upper

β-regular. If 0 < s < β
2
, then for all α > β

2
the following embedding

holds

Hs
γ(G ) ↪→ Lα

∗
(G ),

where α∗ = 2α
α−s .

18 / 27



Why locally compact abelian groups?
Sobolev spaces on locally compact abelian groups

What if we had a metric?
What's next?

Dual metrics

De�nition

Let G be a locally compact abelian group. We say that metrics

d : G × G → R and d̂ : G∧ × G∧ → R are dual metrics if:

1 d generates the topology of G and d̂ generates the

compact-open topology of G∧,

2 for each character ξ ∈ G∧ and every x , y ∈ G we have

|ξ(x)− ξ(y)| ≤ d̂(ξ, ê)d(x , y).

19 / 27



Why locally compact abelian groups?
Sobolev spaces on locally compact abelian groups

What if we had a metric?
What's next?

Dual metrics

De�nition

Let G be a locally compact abelian group. We say that metrics

d : G × G → R and d̂ : G∧ × G∧ → R are dual metrics if:

1 d generates the topology of G and d̂ generates the

compact-open topology of G∧,

2 for each character ξ ∈ G∧ and every x , y ∈ G we have

|ξ(x)− ξ(y)| ≤ d̂(ξ, ê)d(x , y).
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Embeddings into Hölder spaces

Theorem (Górka, K.)

Let G be a locally compact abelian group such that d and d̂ are

dual metrics and d̂ is upper β-regular. Furthermore, let us assume

that γ = d̂ and that s = α+ β
2
for some α ∈ (0, 1). Then,

Hs
γ(G ) ↪→ C 0,α(G ). Moreover, there exists C > 0 such that

inequality

‖u‖C0,α(G) ≤ C‖u‖Hs
γ(G)

holds for all u ∈ Hs
γ(G ), where

‖u‖C0,α(G) = ‖u‖C(G) + sup
x 6=y∈G

|u(x)− u(y)|
d(x , y)α

.
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Embeddings into Hölder spaces - p-adic numbers

Theorem (Górka, K.)

Suppose that s = α+ n
2
for some α ∈ (0, 1). Then

Hs

d̂
(Qn

p) ↪→ C 0,α(Qn
p).

Moreover, there exists C > 0 such that inequality

‖u‖C0,α(Qn
p)
≤ C‖u‖Hs

d̂
(Qn

p)

holds for all u ∈ Hs

d̂
(Qn

p).
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Limiting case of embeddings

We already know that

For s < β
2
we have Hs

γ(G ) ↪→ Lα∗(G ).

For s > β
2
we have Hs

γ(G ) ↪→ C 0,α(G ).

What happens if s = β
2
?
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Trudinger-Moser Inequality

Theorem (Górka, K.)

Let G be a locally compact abelian group. Suppose that d̂ is a

metric on G∧ with a polynomial growth of degree β and that

γ = d̂ . Then there exist universal constants C = C (β) > 0, α > 0

such that ∫
G

(
e
α
(
u(x)
‖u‖

)2
− 1

)
dµG (x) ≤ C ,

where ‖u‖ = ‖u‖
H
β
2
γ (G)

.
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Trudinger-Moser Inequality - p-adic numbers

Theorem (Górka, K.)

There exist universal constants C = C (n) > 0, α > 0 such that∫
Qn
p

(
e
α
(
u(x)
‖u‖

)2
− 1

)
dµQn

p
(x) ≤ C ,

where ‖u‖ = ‖u‖
H

n
2
d̂

.

24 / 27



Why locally compact abelian groups?
Sobolev spaces on locally compact abelian groups

What if we had a metric?
What's next?

Open problems

1 Classify locally compact abelian and metrizable groups for

which Hs
γ(G ), Hajªasz spaces and Newtonian spaces coincide.

2 What are necessary conditions for which dual metrics exist?

3 Characterize endomorphisms of Sobolev spaces Hs
γ(G ).
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Thank you for your attention
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