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Factorization of some Banach function spaces.
The Lozanovski¼¬factorization theorem

For any ε > 0 each z 2 L1 can be factorized by x 2 E and y 2 E 0 in
such a way that

z = xy and kxkE kykE 0 � (1+ ε)kzkL1 .
This theorem can be written in the form L1 � E � E 0, where

E � F = fx � y : x 2 E and y 2 Fg . (1)

Then natural question arises: when is it possible to factorize F
through E , that is, when

F � E �M (E ,F )? (not true in general ! for F = Lp) (2)

Here M (E ,F ) is the space of multipliers de�ned as

M (E ,F ) =
�
x 2 L0 : yx 2 F for each y 2 E

	
with the operator norm kxkM (E ,F ) = supkykE=1 kxykF .
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Factorization of some Banach function spaces.
Outline

1 Introduction.
2 The space of multipliers M (E ,F ) and the pointwise product space
E � F .

3 The factorization of Calderón-Lozanovski¼¬spaces.
4 The factorization of symmetric spaces (including the Lorentz and
Marcinkiewicz spaces).

Based on the papers:

Pawe÷Kolwicz, Karol Lésnik and Lech Maligranda, Pointwise multipliers of
Calderón-Lozanovski¼¬spaces, Math. Nachr. Vol. 286, no. 8-9, (2013),
876-907.

Pawe÷Kolwicz, Karol Lésnik and Lech Maligranda, Pointwise products of
some Banach function spaces and factorization, J. Funct. Anal. 266, 2,
(2014), 616�659.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 3 / 31



Introduction.

Let (Ω,Σ, µ) be a σ��nite and complete measure space.

By L0 = L0(Ω) we denote the set of all µ-equivalence classes of real
valued measurable functions de�ned on Ω.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 4 / 31



Introduction.

Let (Ω,Σ, µ) be a σ��nite and complete measure space.
By L0 = L0(Ω) we denote the set of all µ-equivalence classes of real
valued measurable functions de�ned on Ω.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 4 / 31



Introduction.

Banach ideal space on Ω
A Banach space E = (E , k � kE ) is said to be a Banach ideal space
on Ω if E is a linear subspace of L0(Ω) and

1 if x 2 E , y 2 L0 and jy j � jx j µ-a.e., then y 2 E and kykE � kxkE ;
2 We assume additionally that there exists a function x in E that is
positive on the whole T .

Banach function space
If the Banach ideal space E is considered over the non-atomic
measure µ, then we shall say that E is a Banach function space.
The p-convexi�cation E (p) of E is de�ned by

E (p) =
�
x 2 L0 : jx jp 2 E

	
, for 1 � p < ∞, (3)

with the norm kxkE (p) = kjx jpk
1/p
E . In case 0 < p < 1, we will say

about p-concavi�cation of E .
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Introduction.

Symmetric function space
By a symmetric function space (symmetric Banach function space)
on I , where I = [0, 1] or I = [0,∞) with the Lebesgue measure m, we
mean a Banach ideal space E = (E , k � kE ) with the additional
property that for any two equimeasurable functions x � y ,
x , y 2 L0(I ) (that is, dx = dy , where

dx (λ) = m(ft 2 I : jx(t)j > λg),λ � 0)
and x 2 E we have y 2 E and kxkE = kykE . In particular,
kxkE = kx�kE , where

x�(t) = inffλ > 0 : dx (λ) � tg, t � 0.

The maximal function

x��(t) =
1
t

Z t

0
x�(s)ds.

The fundamental function fE of a symmetric function space E on I :
fE (t) = kχ[0, t ]kE , t 2 I .
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The space of pointwise multipliers.

Let (E , k � kE ) and (F , k � kF ) be ideal Banach spaces in L0(Ω). The
space of pointwise multipliers M(E ,F ) is de�ned by

M(E ,F ) = fx 2 L0(Ω) : xy 2 F for all y 2 Eg (4)

and the functional on it

kxkM (E ,F ) = supfkxykF , y 2 E , kykE � 1g (5)

de�nes a complete semi-norm.

k � kM (E ,F ) is a norm and M(E ,F ) is an ideal Banach space if and
only if supp E = Ω, that is, E has a weak unit, i. e., x0 2 E such
that x0 > 0 µ-a.e. on Ω.
If F = L1 we have M(E , L1) = E 0, where E 0 is the classical
associated space to E or the Köthe dual space of E .
Note that M(E ,F ) can be f0g.
It is possible that supp M(E ,F ) is smaller than supp E \ supp F .
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The space of pointwise multipliers.

Theorem. Let E and F be non-trivial symmetric function spaces on
I .

The space of multipliers M(E ,F ) is a symmetric function space on I .

If the symmetric spaces E ,F are on I = [0, 1], then M(E ,F ) 6= f0g
if and only if E ,! F .
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Pointwise products of some Banach function spaces.

Given two Banach ideal spaces (real or complex) E and F on
(Ω,Σ, µ) de�ne the pointwise product space E � F as

E � F = fx � y : x 2 E and y 2 Fg .

with a functional k � kE�F de�ned by the formula

kzkE�F = inf fkxkE kykF : z = xy , x 2 E , y 2 Fg . (6)

The study of spaces E � F : T. Ando (1960); S. W. Wang (1963); R. O�Neil
(1965); P. P. Zabre¼¬ko and Ja. B. Ruticki¼¬(1967); G. Dankert (1974); Ja. B.

Ruticki¼¬(1979); L. Maligranda (1989); M. M. Rao and Z. D. Ren (1991); Y.

Raynaud (1992); B. Bollobás and I. Leader (1993); A. Defant, M. Masty÷o and C.

Michels (2003); S. V. Astashkin and L. Maligranda (2009); T. Kühn and M.

Masty÷o (2010); A. R. Schep (2010).
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Pointwise products of some Banach function spaces.
Basic properties.

Proposition. If E and F are Banach ideal spaces on (Ω,Σ, µ), then
E � F has an ideal property. Moreover,

kzkE�F = k jz j kE�F
= inf fkxkE kykF : jz j = xy , x 2 E+, y 2 F+g
= inf fkxkE kykF : jz j � xy , x 2 E+, y 2 F+g .
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Pointwise products of some Banach function spaces.
The Calderón space.

De�nition. 0 < s < 1. The Calderón space is de�ned by

E sF 1�s = fz 2 L0(Ω) : jz j � x sy1�s (7)

for some x 2 E+, y 2 F+g with the norm

kzkE sF 1�s = inf
�
max fkxkE , kykF g : jz j � x sy1�s , x 2 E+, y 2 F+

	
.

(8)
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Pointwise products of some Banach function spaces.
Useful characterization.

Theorem. Let E and F be a couple of Banach ideal spaces on
(Ω,Σ, µ). Then

E � F � (E 1/2F 1/2)(1/2), that is (9)

kzkE�F =
inf
�
max

�
kxk2E , kyk2F

	
: jz j = xy , kxkE = kykF , x 2 E+, y 2 F+

	
.
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Pointwise products of some Banach function spaces.
Basic properties.

Corollary. Let E and F be a couple of Banach ideal spaces on
(Ω,Σ, µ).

1 Then E � F is a quasi-Banach ideal space and the triangle inequality
is satis�ed with constant 2, i.e.,

kx + ykE�F � 2 (kxkE�F + kykE�F ) .

2 If both E and F satisfy the Fatou property, then E � F has the Fatou
property.
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Pointwise products of some Banach function spaces.
Basic properties.

Examples

1 If 1 � p, q � ∞, 1/p + 1/q = 1/r , then Lp � Lq � Lr . In particular,
Lp � Lp � Lp/2.

2 More general, if 1 � p, q < ∞, 1/p + 1/q = 1/r and E is a Banach
ideal space, then E (p) � E (q) � E (r ).

3 We have c0 � l1 � l∞ � l1 � l1 and c0 � c0 � l∞ 6= l∞ � l∞ � l∞.

Theorem. Suppose that E ,F are Banach ideal spaces such that E is
p0-convex with constant 1, F is p1-convex with constant 1 and
1
p0
+ 1

p1
� 1. Then E � F is a Banach space which is even p

2 -convex,
where

1
p
=
1
2
(
1
p0
+
1
p1
).
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Pointwise products of some Banach function spaces.
The fundamental function.

Theorem. Let E and F be symmetric Banach spaces on I = (0, 1) or
I = (0,∞) with the fundamental functions fE and fF , respectively.
Then E � F is a symmetric quasi-Banach space on I and its
fundamental function fE�F is given by the formula

fE�F (t) = fE (t)fF (t) for t 2 I . (10)

In particular fE (t)fE 0(t) = t = fL1(t) for t 2 I .
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The factorization - several results.

Let E = Lp,1 with the norm kxkE = 1
p

R
I t

1
p�1x�(t) dt for

1 < p < ∞, then M(Lp,1, Lp) � L∞ and

Lp,1 �M(Lp,1, Lp) � Lp,1 � L∞ � Lp,1 ( Lp .

Therefore, we even don�t have factorization Lp = E �M(E , Lp) with
equivalent norms.

Similarly, if F = Lp,∞ with the norm kxkF = supt2I t1/px�(t) for
1 < p < ∞, then M(Lp , Lp,∞) � M(Lp 0,1, Lp 0) � L∞ and

Lp �M(Lp , Lp,∞) � Lp � L∞ � Lp ( Lp,∞.

Therefore, again we even don�t have equality F = Lp �M(Lp ,F )
with equivalent norms.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 16 / 31



The factorization - several results.

Let E = Lp,1 with the norm kxkE = 1
p

R
I t

1
p�1x�(t) dt for

1 < p < ∞, then M(Lp,1, Lp) � L∞ and

Lp,1 �M(Lp,1, Lp) � Lp,1 � L∞ � Lp,1 ( Lp .

Therefore, we even don�t have factorization Lp = E �M(E , Lp) with
equivalent norms.

Similarly, if F = Lp,∞ with the norm kxkF = supt2I t1/px�(t) for
1 < p < ∞, then M(Lp , Lp,∞) � M(Lp 0,1, Lp 0) � L∞ and

Lp �M(Lp , Lp,∞) � Lp � L∞ � Lp ( Lp,∞.

Therefore, again we even don�t have equality F = Lp �M(Lp ,F )
with equivalent norms.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 16 / 31



The factorization - several results.

(P. Nilsson 1985) If F is a Banach ideal space with the Fatou
property which is q-concave with constant 1 for 1 < q < ∞, then

F = F 00 � Lq �M(F 0, Lq 0) � Lq �M(Lq ,F ). (11)

(A. R. Schep 2010)
(a) the equivalence in Nilsson theorem.
(b) A Banach ideal space E with the Fatou property is p-convex with
constant 1 (1 < p < ∞) if and only if

Lp � E �M(E , Lp). (12)
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The factorization of Calderón-Lozanovski¼¬spaces.
Orlicz function

Young function

A function ϕ : [0,∞)! [0,∞] is called a Young function if it is
convex, vanishing at zero, left continuous on (0,∞) and neither
identically zero nor identically in�nity.

Orlicz function
If additionally ϕ < ∞ then ϕ is called an Orlicz function.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 18 / 31



The factorization of Calderón-Lozanovski¼¬spaces.
Orlicz function

Young function

A function ϕ : [0,∞)! [0,∞] is called a Young function if it is
convex, vanishing at zero, left continuous on (0,∞) and neither
identically zero nor identically in�nity.

Orlicz function
If additionally ϕ < ∞ then ϕ is called an Orlicz function.

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 18 / 31



The factorization of Calderón-Lozanovski¼¬spaces.
Calderón-Lozanovski¼¬space

De�ne on L0 a convex modular Iϕ by

Iϕ(x) =
�
kϕ � jx jkE if ϕ � jx j 2 E ,

∞ otherwise,
(13)

where (ϕ � jx j) (t) = ϕ (jx (t)j) , t 2 T .

By the Calderón-Lozanovski¼¬space Eϕ we mean

Eϕ = fx 2 L0 : Iϕ(cx) < ∞ for some c > 0g (14)

equipped with so called Luxemburg-Nakano norm de�ned by

kxkϕ = inf
�

λ > 0 : Iϕ (x/λ) � 1
	
. (15)
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The factorization of Calderón-Lozanovski¼¬spaces.
Particular cases of Calderón-Lozanovski¼¬space.

If ϕ > 0 and ϕ < ∞, then Eϕ is the interpolation space between
L∞ and E (A. P. Calderón, G. Ya. Lozanovski¼¬).

If E = L1 (e = l1), then Eϕ is the Orlicz function (sequence) space
equipped with the Luxemburg norm.

If E = Λω (e = λω), then Eϕ is the Orlicz-Lorentz function
(sequence) space denoted by (Λω)ϕ ((λω)ϕ) and equipped with the
Luxemburg norm.

If ϕ (u) = up , 1 � p < ∞, then Eϕ is the p-convexi�cation E (p) of E

with the norm kxkE (p) = (kjx j
pkE )

1/p
.

The study of spaces Eϕ: A. P. Calderón, G. Ya. Lozanovski¼¬, Z. Altshuler, J.

Cerda, P. Foralewski, H. Hudzik, A. Kamínska, L. Maligranda, M. Masty÷o, P.K.

Lin, V.I. Ovchinnikov,Y. Raynaud, S. Reisner and others.
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The factorization of Calderón-Lozanovski¼¬spaces.

For the Young function ϕ we de�ne its right-continuous inverse in a
generalized sense by the formula:

ϕ�1(v) = inffu � 0 : ϕ(u) > vg for v 2 [0,∞) (16)

and ϕ�1(∞) = lim
v!∞

ϕ�1(v). (17)

The symbol
ϕ�11 ϕ�12 � ϕ�1

for all arguments [for large arguments] (for small arguments) means
that there are constants C ,D > 0 [there are constants C ,D, u0 > 0]
(there are constants C ,D, u0 > 0 ) such that the inequalities

C ϕ�11 (u)ϕ
�1
2 (u) � ϕ�1(u) � Dϕ�11 (u)ϕ

�1
2 (u) (18)

hold for all u > 0 [for all u � u0] (for all 0 < u � u0), respectively.
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The factorization of Calderón-Lozanovski¼¬spaces.

Theorem
Let E be a Banach ideal space with the Fatou property and supp E = Ω.
Suppose that for two Young functions ϕ, ϕ1 there is a Young function ϕ2
such that one of the following conditions holds:

(i) ϕ�11 ϕ�12 � ϕ�1 for all arguments,

(ii) ϕ�11 ϕ�12 � ϕ�1 for large arguments and L∞ ,! E ,

(iii) ϕ�11 ϕ�12 � ϕ�1 for small arguments and E ,! L∞.

Then the factorization Eϕ1
�M

�
Eϕ1
,Eϕ

�
= Eϕ with equivalent norms is

valid.
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Applying results concerning the space of multipliers we get

Corollary
Let ϕ, ϕ1 be two Orlicz functions, and let E Banach an ideal space with

the Fatou property and supp E = Ω. If the function fv (u) =
ϕ(uv )
ϕ1(u)

is

non-increasing on (0,∞) for any v > 0, then the factorization

Eϕ1
�M(Eϕ1

,Eϕ) = Eϕ

is valid with equivalent norms.

It is enough to take the function ϕ2 as
ϕ2 = ϕ	 ϕ1 = supv>0 fϕ (uv)� ϕ1 (v)g and used the fact proved
in [KLM2013] showing that ϕ�11 ϕ�12 � ϕ�1 for all arguments.
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The factorization of symmetric spaces.

For any quasi-concave function φ on I the Marcinkiewicz function
space Mφ is de�ned by the norm

kxkMφ = sup
t2I

φ(t) x��(t), x��(t) =
1
t

Z t

0
x�(s)ds.

For any concave function φ on I the Lorentz function space Λφ given
by the norm

kxkΛφ
=
Z
I
x�(t)dφ(t) = φ(0+)kxkL∞(I ) +

Z
I
x�(t)φ

0
(t)dt.

We have
ΛfE

1
,! E

1
,! MfE . (19)

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 24 / 31



The factorization of symmetric spaces.

For any quasi-concave function φ on I the Marcinkiewicz function
space Mφ is de�ned by the norm

kxkMφ = sup
t2I

φ(t) x��(t), x��(t) =
1
t

Z t

0
x�(s)ds.

For any concave function φ on I the Lorentz function space Λφ given
by the norm

kxkΛφ
=
Z
I
x�(t)dφ(t) = φ(0+)kxkL∞(I ) +

Z
I
x�(t)φ

0
(t)dt.

We have
ΛfE

1
,! E

1
,! MfE . (19)

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 24 / 31



The factorization of symmetric spaces.

For any quasi-concave function φ on I the Marcinkiewicz function
space Mφ is de�ned by the norm

kxkMφ = sup
t2I

φ(t) x��(t), x��(t) =
1
t

Z t

0
x�(s)ds.

For any concave function φ on I the Lorentz function space Λφ given
by the norm

kxkΛφ
=
Z
I
x�(t)dφ(t) = φ(0+)kxkL∞(I ) +

Z
I
x�(t)φ

0
(t)dt.

We have
ΛfE

1
,! E

1
,! MfE . (19)

Pawe÷Kolwicz POLAND () Factorization Zielona Góra 2015 24 / 31



The factorization of symmetric spaces.

Consider also another Marcinkiewicz space M�
φ than the space Mφ as

M�
φ = M

�
φ(I ) = fx 2 L0(I ) : kxkM �

φ
= sup

t2I
φ(t)x�(t) < ∞g.

This Marcinkiewicz space need not be a Banach space and always we

have Mφ
1
,! M�

φ . Moreover, M
�
φ

C
,! Mφ if and only ifZ t

0

1
φ(s)

ds � C t
φ(t)

for all t 2 I . (20)
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The factorization of symmetric spaces.

The lower index pφ,I and upper index qφ,I of a function φ on I are
numbers de�ned as

pφ,I = lim
t!0+

lnmφ,I (t)

ln t
, qφ,I = lim

t!∞

lnmφ,I (t)

ln t
, mφ,I (t) = sup

s2I ,st2I

φ(st)
φ(s)

.

It is known that for a quasi-concave function φ on [0,∞) we have
0 � pφ,[0,∞) � pφ,[0,1] � qφ,[0,1] � qφ,[0,∞) � 1.

We also need for a di¤erentiable increasing function φ on I with
φ(0+) = 0 the Simonenko indices

sφ,I = inf
t2I

tφ0(t)
φ(t)

, σφ,I = sup
t2I

tφ0(t)
φ(t)

.

They satisfy 0 � sφ,I � pφ,I � qφ,I � σφ,I .
The Boyd indices of E are de�ned by

αE = lim
s!0+

ln kDskE!E
ln s

, βE = lim
s!∞

ln kDskE!E
ln s

.

We have 0 � αE � βE � 1.
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The factorization of symmetric spaces.

Theorem
Let φ,ψ be a non-decreasing, concave functions on I with

φ(0+) = ψ(0+) = 0. Suppose ψ(t)
φ(t) is a non-decreasing function on I .

If sφ,I > 0 and sψ,I > 0, then

Λφ �M(Λφ,Λψ) = Λψ.

Moreover, for any symmetric space F on I with the fundamental
function fF (t) = ψ(t) and under the above assumptions on φ and ψ
we have

Λφ �M(Λφ,F ) = F if and only if F = Λψ. (21)
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The factorization of symmetric spaces.

Theorem
Let φ,ψ be a non-decreasing, concave functions on I with

φ(0+) = ψ(0+) = 0. Suppose ψ(t)
φ(t) is a non-decreasing function on I .

If σφ,I < 1 and σψ,I < 1, then

Mφ �M(Mφ,Mψ) = Mψ.

Moreover, for any symmetric space E on I having Fatou property,
with the fundamental function fE (t) = φ(t) and under the above
assumptions on φ and ψ we have

E �M(E ,Mψ) = Mψ if and only if E = Mφ. (22)

If σφ,I < 1, sψ,I > 0 and sψ/φ,I > 0, then

Mφ �M(Mφ,Λψ) = Λψ. (23)
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The factorization of symmetric spaces.

Theorem
Let φ be an increasing, concave function on I with 0 < pφ,I � qφ,I < 1.

Suppose that F is a symmetric space on I with the lower Boyd index
αF > qφ,I and such that M(M�

φ ,F ) 6= f0g. Then

F = M�
φ �M(M�

φ ,F ) = Mφ �M(Mφ,F ).
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Thank You very much for the attention
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The factorization of symmetric spaces.

Theorem
Let φ be an increasing, concave function on I with 0 < pφ,I � qφ,I < 1.

Suppose that E is a symmetric space on I with the Fatou property,
which Boyd indices satisfy 0 < αE � βE < pφ,I and such that
M(E ,Λφ) 6= f0g. Then

Λφ,1 = E �M(E ,Λφ).

the Lorentz space Λφ,1 on I de�ned as

Λφ,1 = fx 2 L0(I ) : kxkΛφ,1 =
Z
I
x�(t)

φ(t)
t
dt < ∞g.

Space Λφ,1 is a Banach space and if φ(t) � atφ0(t) for all t 2 I ,
then Λφ,1

1
,! Λφ

a
,! Λφ,1.
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