Factorization of some Banach function spaces

Paweł Kolwicz Institute of Mathematics Poznań University of Technology POLAND

Function Spaces XI

Zielona Góra 2015

Factorization of some Banach function spaces.

The Lozanovskiĭ factorization theorem

For any ε > 0 each z ∈ L¹ can be factorized by x ∈ E and y ∈ E' in such a way that

z = xy and $||x||_{E} ||y||_{E'} \le (1+\varepsilon) ||z||_{L^1}$.

This theorem can be written in the form $L^1 \equiv E \odot E'$, where

$$E \odot F = \{x \cdot y : x \in E \text{ and } y \in F\}.$$
(1)

Factorization of some Banach function spaces.

The Lozanovskiĭ factorization theorem

For any ε > 0 each z ∈ L¹ can be factorized by x ∈ E and y ∈ E' in such a way that

z = xy and $||x||_{E} ||y||_{E'} \le (1+\varepsilon) ||z||_{L^1}$.

This theorem can be written in the form $L^1 \equiv E \odot E'$, where

$$E \odot F = \{x \cdot y : x \in E \text{ and } y \in F\}.$$
(1)

• Then natural question arises: when is it possible to factorize *F* through *E*, that is, when

 $F \equiv E \odot M(E, F)$? (not true in general ! for $F = L^p$) (2)

Here M(E, F) is the space of multipliers defined as

$$M\left(E,F\right)=\left\{x\in L^{0}: yx\in F \text{ for each } y\in E\right\}$$

with the operator norm $||x||_{M(E,F)} = \sup_{||y||_E=1} ||xy||_F$.

Factorization of some Banach function spaces. Outline

- Introduction.
- **2** The space of multipliers M(E, F) and the pointwise product space $E \odot F$.
- The factorization of Calderón-Lozanovskii spaces.
- The factorization of symmetric spaces (including the Lorentz and Marcinkiewicz spaces).

Based on the papers:

- Paweł Kolwicz, Karol Leśnik and Lech Maligranda, Pointwise multipliers of Calderón-Lozanovskiĭ spaces, Math. Nachr. Vol. 286, no. 8-9, (2013), 876-907.
 - Paweł Kolwicz, Karol Leśnik and Lech Maligranda, Pointwise products of some Banach function spaces and factorization, J. Funct. Anal. 266, 2, (2014), 616–659.

• Let (Ω, Σ, μ) be a σ -finite and complete measure space.

- Let (Ω, Σ, μ) be a σ -finite and complete measure space.
- By L⁰ = L⁰(Ω) we denote the set of all μ-equivalence classes of real valued measurable functions defined on Ω.

$\bullet\,$ Banach ideal space on Ω

A Banach space $E = (E, \|\cdot\|_E)$ is said to be a *Banach ideal space* on Ω if *E* is a linear subspace of $L^0(\Omega)$ and

• Banach ideal space on Ω

A Banach space $E = (E, \|\cdot\|_E)$ is said to be a *Banach ideal space* on Ω if *E* is a linear subspace of $L^0(\Omega)$ and

• if $x \in E$, $y \in L^0$ and $|y| \le |x| \ \mu$ -a.e., then $y \in E$ and $||y||_E \le ||x||_E$;

• Banach ideal space on Ω

A Banach space $E = (E, \|\cdot\|_E)$ is said to be a *Banach ideal space* on Ω if E is a linear subspace of $L^0(\Omega)$ and

if x ∈ E, y ∈ L⁰ and |y| ≤ |x| µ-a.e., then y ∈ E and ||y||_E ≤ ||x||_E;
We assume additionally that there exists a function x in E that is positive on the whole T.

• Banach ideal space on Ω

A Banach space $E = (E, \|\cdot\|_E)$ is said to be a *Banach ideal space* on Ω if E is a linear subspace of $L^0(\Omega)$ and

• if $x \in E$, $y \in L^0$ and $|y| \le |x| \ \mu$ -a.e., then $y \in E$ and $||y||_E \le ||x||_E$;

- We assume additionally that there exists a function x in E that is positive on the whole T.
 - Banach function space

If the Banach ideal space E is considered over the non-atomic measure μ , then we shall say that E is a *Banach function space*.

• Banach ideal space on Ω

A Banach space $E = (E, \|\cdot\|_E)$ is said to be a *Banach ideal space* on Ω if E is a linear subspace of $L^0(\Omega)$ and

• if $x \in E$, $y \in L^0$ and $|y| \le |x| \mu$ -a.e., then $y \in E$ and $||y||_E \le ||x||_E$;

- We assume additionally that there exists a function x in E that is positive on the whole T.
 - Banach function space

If the Banach ideal space E is considered over the non-atomic measure μ , then we shall say that E is a *Banach function space*.

• The *p*-convexification $E^{(p)}$ of *E* is defined by

$$E^{(p)} = \left\{ x \in L^0 : |x|^p \in E \right\}$$
, for $1 \le p < \infty$, (3)

with the norm $||x||_{E^{(p)}} = |||x|^p||_E^{1/p}$. In case 0 , we will say about*p*-concavification of*E*.

• Symmetric function space

By a symmetric function space (symmetric Banach function space) on I, where I = [0, 1] or $I = [0, \infty)$ with the Lebesgue measure m, we mean a Banach ideal space $E = (E, \|\cdot\|_E)$ with the additional property that for any two equimeasurable functions $x \sim y$, $x, y \in L^0(I)$ (that is, $d_x = d_y$, where

$$d_x(\lambda) = m(\{t \in I : |x(t)| > \lambda\}), \lambda \ge 0)$$

and $x \in E$ we have $y \in E$ and $||x||_E = ||y||_E$. In particular, $||x||_E = ||x^*||_E$, where

$$x^*(t) = \inf\{\lambda > 0: d_x(\lambda) \le t\}, t \ge 0.$$

• Symmetric function space

By a symmetric function space (symmetric Banach function space) on I, where I = [0, 1] or $I = [0, \infty)$ with the Lebesgue measure m, we mean a Banach ideal space $E = (E, \|\cdot\|_E)$ with the additional property that for any two equimeasurable functions $x \sim y$, $x, y \in L^0(I)$ (that is, $d_x = d_y$, where

$$d_x(\lambda) = m(\{t \in I : |x(t)| > \lambda\}), \lambda \ge 0)$$

and $x\in E$ we have $y\in E$ and $\|x\|_E=\|y\|_E$. In particular, $\|x\|_E=\|x^*\|_E$, where

$$x^*(t) = \inf\{\lambda > 0: d_x(\lambda) \le t\}, t \ge 0.$$

• The maximal function

$$x^{**}(t) = rac{1}{t} \int_0^t x^*(s) ds.$$

• Symmetric function space

By a symmetric function space (symmetric Banach function space) on I, where I = [0, 1] or $I = [0, \infty)$ with the Lebesgue measure m, we mean a Banach ideal space $E = (E, \|\cdot\|_E)$ with the additional property that for any two equimeasurable functions $x \sim y$, $x, y \in L^0(I)$ (that is, $d_x = d_y$, where

$$d_x(\lambda) = m(\{t \in I : |x(t)| > \lambda\}), \lambda \ge 0)$$

and $x\in E$ we have $y\in E$ and $\|x\|_E=\|y\|_E$. In particular, $\|x\|_E=\|x^*\|_E$, where

$$x^*(t) = \inf\{\lambda > 0: d_x(\lambda) \le t\}, t \ge 0.$$

• The maximal function

$$x^{**}(t) = rac{1}{t} \int_0^t x^*(s) ds.$$

• The fundamental function f_E of a symmetric function space E on I: $f_E(t) = \|\chi_{[0,t]}\|_E, t \in I.$

Paweł Kolwicz POLAND ()

The space of pointwise multipliers.

Let (E, || · ||_E) and (F, || · ||_F) be ideal Banach spaces in L⁰(Ω). The space of pointwise multipliers M(E, F) is defined by

$$M(E,F) = \{ x \in L^0(\Omega) : xy \in F \text{ for all } y \in E \}$$
(4)

and the functional on it

$$\|x\|_{\mathcal{M}(E,F)} = \sup\{\|xy\|_F, \ y \in E, \|y\|_E \le 1\}$$
(5)

$$M(E,F) = \{ x \in L^0(\Omega) : xy \in F \text{ for all } y \in E \}$$
(4)

and the functional on it

$$\|x\|_{M(E,F)} = \sup\{\|xy\|_F, \ y \in E, \|y\|_E \le 1\}$$
(5)

defines a complete semi-norm.

|| · ||_{M(E,F)} is a norm and M(E, F) is an ideal Banach space if and only if supp E = Ω, that is, E has a weak unit, i. e., x₀ ∈ E such that x₀ > 0 μ-a.e. on Ω.

$$M(E,F) = \{ x \in L^0(\Omega) : xy \in F \text{ for all } y \in E \}$$
(4)

and the functional on it

$$\|x\|_{M(E,F)} = \sup\{\|xy\|_F, \ y \in E, \|y\|_E \le 1\}$$
(5)

- || · ||_{M(E,F)} is a norm and M(E, F) is an ideal Banach space if and only if supp E = Ω, that is, E has a weak unit, i. e., x₀ ∈ E such that x₀ > 0 μ-a.e. on Ω.
- If $F = L^1$ we have $M(E, L^1) = E'$, where E' is the classical associated space to E or the Köthe dual space of E.

$$M(E,F) = \{ x \in L^0(\Omega) : xy \in F \text{ for all } y \in E \}$$
(4)

and the functional on it

$$\|x\|_{M(E,F)} = \sup\{\|xy\|_F, \ y \in E, \|y\|_E \le 1\}$$
(5)

- || · ||_{M(E,F)} is a norm and M(E, F) is an ideal Banach space if and only if supp E = Ω, that is, E has a weak unit, i. e., x₀ ∈ E such that x₀ > 0 μ-a.e. on Ω.
- If $F = L^1$ we have $M(E, L^1) = E'$, where E' is the classical associated space to E or the Köthe dual space of E.
- Note that M(E, F) can be $\{0\}$.

$$M(E,F) = \{ x \in L^0(\Omega) : xy \in F \text{ for all } y \in E \}$$
(4)

and the functional on it

$$\|x\|_{M(E,F)} = \sup\{\|xy\|_F, \ y \in E, \|y\|_E \le 1\}$$
(5)

- || · ||_{M(E,F)} is a norm and M(E, F) is an ideal Banach space if and only if supp E = Ω, that is, E has a weak unit, i. e., x₀ ∈ E such that x₀ > 0 μ-a.e. on Ω.
- If $F = L^1$ we have $M(E, L^1) = E'$, where E' is the classical associated space to E or the Köthe dual space of E.
- Note that M(E, F) can be $\{0\}$.
- It is possible that supp M(E, F) is smaller than supp $E \cap supp F$.

• **Theorem**. Let *E* and *F* be non-trivial symmetric function spaces on *I*.

- **Theorem**. Let *E* and *F* be non-trivial symmetric function spaces on *I*.
- The space of multipliers M(E, F) is a symmetric function space on I.

- **Theorem**. Let *E* and *F* be non-trivial symmetric function spaces on *I*.
- The space of multipliers M(E, F) is a symmetric function space on I.
- If the symmetric spaces E, F are on I = [0, 1], then $M(E, F) \neq \{0\}$ if and only if $E \hookrightarrow F$.

Pointwise products of some Banach function spaces.

 Given two Banach ideal spaces (real or complex) E and F on (Ω, Σ, μ) define the *pointwise product space* E ⊙ F as

 $E \odot F = \{x \cdot y : x \in E \text{ and } y \in F\}.$

with a functional $\|\cdot\|_{E\odot F}$ defined by the formula

 $||z||_{E \odot F} = \inf \{ ||x||_E ||y||_F : z = xy, x \in E, y \in F \}.$ (6)

The study of spaces $E \odot F$: T. Ando (1960); S. W. Wang (1963); R. O'Neil (1965); P. P. Zabreĭko and Ja. B. Rutickiĭ (1967); G. Dankert (1974); Ja. B. Rutickiĭ (1979); L. Maligranda (1989); M. M. Rao and Z. D. Ren (1991); Y. Raynaud (1992); B. Bollobás and I. Leader (1993); A. Defant, M. Mastyło and C. Michels (2003); S. V. Astashkin and L. Maligranda (2009); T. Kühn and M. Mastyło (2010); A. R. Schep (2010).

(日) (同) (日) (日)

 Proposition. If E and F are Banach ideal spaces on (Ω, Σ, μ), then E ⊙ F has an ideal property. Moreover,

$$\begin{aligned} \|z\|_{E \odot F} &= \||z|\|_{E \odot F} \\ &= \inf \{ \|x\|_E \|y\|_F : |z| = xy, \, x \in E_+, \, y \in F_+ \} \\ &= \inf \{ \|x\|_E \|y\|_F : |z| \le xy, \, x \in E_+, \, y \in F_+ \} . \end{aligned}$$

Pointwise products of some Banach function spaces. The Calderón space.

• **Definition**. 0 < s < 1. The Calderón space is defined by

$$E^{s}F^{1-s} = \{ z \in L^{0}(\Omega) : |z| \le x^{s}y^{1-s}$$
(7)

for some $x \in E_+$, $y \in F_+$ with the norm

$$||z||_{E^{s}F^{1-s}} = \inf \left\{ \max \left\{ ||x||_{E}, ||y||_{F} \right\} : |z| \le x^{s}y^{1-s}, x \in E_{+}, y \in F_{+} \right\}$$
(8)

Pointwise products of some Banach function spaces. Useful characterization.

Theorem. Let E and F be a couple of Banach ideal spaces on (Ω, Σ, μ). Then

$$E \odot F \equiv (E^{1/2}F^{1/2})^{(1/2)}$$
, that is (9)

$$\|z\|_{E \odot F} =$$

$$\inf \left\{ \max \left\{ \|x\|_{E}^{2}, \|y\|_{F}^{2} \right\} : |z| = xy, \|x\|_{E} = \|y\|_{F}, x \in E_{+}, y \in F_{+} \right\}.$$

 Corollary. Let E and F be a couple of Banach ideal spaces on (Ω, Σ, μ).

- Corollary. Let E and F be a couple of Banach ideal spaces on (Ω, Σ, μ).
- Then E ⊙ F is a quasi-Banach ideal space and the triangle inequality is satisfied with constant 2, i.e.,

$$||x+y||_{E \odot F} \le 2(||x||_{E \odot F} + ||y||_{E \odot F}).$$

- Corollary. Let E and F be a couple of Banach ideal spaces on (Ω, Σ, μ).
- Then E ⊙ F is a quasi-Banach ideal space and the triangle inequality is satisfied with constant 2, i.e.,

$$||x+y||_{E \odot F} \le 2(||x||_{E \odot F} + ||y||_{E \odot F}).$$

If both E and F satisfy the Fatou property, then E ⊙ F has the Fatou property.

Pointwise products of some Banach function spaces.

Basic properties.

• Examples

If $1 \le p, q \le \infty, 1/p + 1/q = 1/r$, then $L^p \odot L^q \equiv L^r$. In particular, $L^p \odot L^p \equiv L^{p/2}$.

- If $1 \le p, q \le \infty, 1/p + 1/q = 1/r$, then $L^p \odot L^q \equiv L^r$. In particular, $L^p \odot L^p \equiv L^{p/2}$.
- Some general, if 1 ≤ p, q < ∞, 1/p + 1/q = 1/r and E is a Banach ideal space, then $E^{(p)} \odot E^{(q)} \equiv E^{(r)}$.

- If $1 \le p, q \le \infty, 1/p + 1/q = 1/r$, then $L^p \odot L^q \equiv L^r$. In particular, $L^p \odot L^p \equiv L^{p/2}$.
- **2** More general, if $1 \le p, q < \infty, 1/p + 1/q = 1/r$ and E is a Banach ideal space, then $E^{(p)} \odot E^{(q)} \equiv E^{(r)}$.

- If $1 \le p, q \le \infty, 1/p + 1/q = 1/r$, then $L^p \odot L^q \equiv L^r$. In particular, $L^p \odot L^p \equiv L^{p/2}$.
- **2** More general, if $1 \le p, q < \infty, 1/p + 1/q = 1/r$ and E is a Banach ideal space, then $E^{(p)} \odot E^{(q)} \equiv E^{(r)}$.
- **Theorem**. Suppose that E, F are Banach ideal spaces such that E is p_0 -convex with constant 1, F is p_1 -convex with constant 1 and $\frac{1}{p_0} + \frac{1}{p_1} \leq 1$. Then $E \odot F$ is a Banach space which is even $\frac{p}{2}$ -convex, where

$$\frac{1}{p} = \frac{1}{2}(\frac{1}{p_0} + \frac{1}{p_1}).$$

Pointwise products of some Banach function spaces. The fundamental function.

• **Theorem**. Let *E* and *F* be symmetric Banach spaces on I = (0, 1) or $I = (0, \infty)$ with the fundamental functions f_E and f_F , respectively. Then $E \odot F$ is a symmetric quasi-Banach space on *I* and its fundamental function $f_{E \odot F}$ is given by the formula

$$f_{E \odot F}(t) = f_E(t) f_F(t) \quad \text{for } t \in I.$$
(10)

Pointwise products of some Banach function spaces. The fundamental function.

Theorem. Let E and F be symmetric Banach spaces on I = (0, 1) or I = (0,∞) with the fundamental functions f_E and f_F, respectively. Then E ⊙ F is a symmetric quasi-Banach space on I and its fundamental function f_{E⊙F} is given by the formula

$$f_{E \odot F}(t) = f_E(t) f_F(t) \quad \text{for } t \in I.$$
(10)

• In particular
$$f_E(t)f_{E'}(t) = t = f_{L^1}(t)$$
 for $t \in I$.

The factorization - several results.

• Let $E = L^{p,1}$ with the norm $||x||_E = \frac{1}{p} \int_I t^{\frac{1}{p}-1} x^*(t) dt$ for $1 , then <math>M(L^{p,1}, L^p) \equiv L^{\infty}$ and

 $L^{p,1} \odot M(L^{p,1}, L^p) \equiv L^{p,1} \odot L^{\infty} \equiv L^{p,1} \subsetneq L^p.$

Therefore, we even don't have factorization $L^p = E \odot M(E, L^p)$ with equivalent norms.

• Let $E = L^{p,1}$ with the norm $||x||_E = \frac{1}{p} \int_I t^{\frac{1}{p}-1} x^*(t) dt$ for $1 , then <math>M(L^{p,1}, L^p) \equiv L^{\infty}$ and

 $L^{p,1} \odot M(L^{p,1}, L^p) \equiv L^{p,1} \odot L^{\infty} \equiv L^{p,1} \subsetneq L^p.$

Therefore, we even don't have factorization $L^p = E \odot M(E, L^p)$ with equivalent norms.

• Similarly, if $F = L^{p,\infty}$ with the norm $||x||_F = \sup_{t \in I} t^{1/p} x^*(t)$ for $1 , then <math>M(L^p, L^{p,\infty}) \equiv M(L^{p',1}, L^{p'}) \equiv L^{\infty}$ and

 $L^{p} \odot M(L^{p}, L^{p,\infty}) \equiv L^{p} \odot L^{\infty} \equiv L^{p} \subsetneq L^{p,\infty}.$

Therefore, again we even don't have equality $F = L^p \odot M(L^p, F)$ with equivalent norms.

 (P. Nilsson 1985) If F is a Banach ideal space with the Fatou property which is q-concave with constant 1 for 1 < q < ∞, then

$$F = F'' \equiv L^q \odot \mathcal{M}(F', L^{q'}) \equiv L^q \odot \mathcal{M}(L^q, F).$$
⁽¹¹⁾

 (P. Nilsson 1985) If F is a Banach ideal space with the Fatou property which is q-concave with constant 1 for 1 < q < ∞, then

$$F = F'' \equiv L^q \odot \mathcal{M}(F', L^{q'}) \equiv L^q \odot \mathcal{M}(L^q, F).$$
(11)

(A. R. Schep 2010)
(a) the equivalence in Nilsson theorem.
(b) A Banach ideal space E with the Fatou property is p-convex with constant 1 (1

$$L^{p} \equiv E \odot M(E, L^{p}).$$
⁽¹²⁾

Orlicz function

Young function

A function φ : [0,∞) → [0,∞] is called a Young function if it is convex, vanishing at zero, left continuous on (0,∞) and neither identically zero nor identically infinity.

Orlicz function

Young function

- A function φ : [0,∞) → [0,∞] is called a Young function if it is convex, vanishing at zero, left continuous on (0,∞) and neither identically zero nor identically infinity.
- Orlicz function

If additionally $\varphi < \infty$ then φ is called an Orlicz function.

Calderón-Lozanovskiĭ space

• Define on L^0 a convex modular I_{φ} by

$$I_{\varphi}(x) = \begin{cases} \|\varphi \circ |x|\|_{E} & \text{if } \varphi \circ |x| \in E, \\ \infty & \text{otherwise,} \end{cases}$$
(13)

where $(\varphi \circ |x|)(t) = \varphi(|x(t)|)$, $t \in T$.

Calderón-Lozanovskiĭ space

• Define on L^0 a convex modular I_{φ} by

$$I_{\varphi}(x) = \begin{cases} \|\varphi \circ |x|\|_{E} & \text{if } \varphi \circ |x| \in E, \\ \infty & \text{otherwise,} \end{cases}$$
(13)

where $\left(arphi \circ |x|
ight) (t) = arphi \left(|x \left(t
ight) |
ight)$, $t \in \mathcal{T}$.

• By the Calderón-Lozanovskiĭ space E_{φ} we mean

$$E_{arphi} = \{x \in L^0 : I_{arphi}(cx) < \infty \ \ ext{for some} \ \ c > 0\}$$
 (14)

equipped with so called Luxemburg-Nakano norm defined by

$$\|x\|_{\varphi} = \inf \left\{ \lambda > 0 : I_{\varphi} \left(x/\lambda \right) \le 1 \right\}.$$
(15)

Particular cases of Calderón-Lozanovskiĭ space.

• If $\varphi > 0$ and $\varphi < \infty$, then E_{φ} is the interpolation space between L^{∞} and E (A. P. Calderón, G. Ya. Lozanovskiĭ).

- If $\varphi > 0$ and $\varphi < \infty$, then E_{φ} is the interpolation space between L^{∞} and E (A. P. Calderón, G. Ya. Lozanovskiĭ).
- If $E = L^1$ ($e = l^1$), then E_{φ} is the Orlicz function (sequence) space equipped with the Luxemburg norm.

- If $\varphi > 0$ and $\varphi < \infty$, then E_{φ} is the interpolation space between L^{∞} and E (A. P. Calderón, G. Ya. Lozanovskiĭ).
- If $E = L^1$ ($e = l^1$), then E_{φ} is the Orlicz function (sequence) space equipped with the Luxemburg norm.
- If $E = \Lambda_{\omega}$ ($e = \lambda_{\omega}$), then E_{φ} is the Orlicz-Lorentz function (sequence) space denoted by $(\Lambda_{\omega})_{\varphi}$ ($(\lambda_{\omega})_{\varphi}$) and equipped with the Luxemburg norm.

- If $\varphi > 0$ and $\varphi < \infty$, then E_{φ} is the interpolation space between L^{∞} and E (A. P. Calderón, G. Ya. Lozanovskiĭ).
- If $E = L^1$ ($e = l^1$), then E_{φ} is the Orlicz function (sequence) space equipped with the Luxemburg norm.
- If $E = \Lambda_{\omega}$ ($e = \lambda_{\omega}$), then E_{φ} is the Orlicz-Lorentz function (sequence) space denoted by $(\Lambda_{\omega})_{\varphi}$ ($(\lambda_{\omega})_{\varphi}$) and equipped with the Luxemburg norm.
- If $\varphi(u) = u^p$, $1 \le p < \infty$, then E_{φ} is the *p*-convexification $E^{(p)}$ of *E* with the norm $||x||_{E^{(p)}} = (||x|^p||_E)^{1/p}$.

- If $\varphi > 0$ and $\varphi < \infty$, then E_{φ} is the interpolation space between L^{∞} and E (A. P. Calderón, G. Ya. Lozanovskiĭ).
- If $E = L^1$ ($e = l^1$), then E_{φ} is the Orlicz function (sequence) space equipped with the Luxemburg norm.
- If $E = \Lambda_{\omega}$ ($e = \lambda_{\omega}$), then E_{φ} is the Orlicz-Lorentz function (sequence) space denoted by $(\Lambda_{\omega})_{\varphi}$ ($(\lambda_{\omega})_{\varphi}$) and equipped with the Luxemburg norm.
- If $\varphi(u) = u^p$, $1 \le p < \infty$, then E_{φ} is the *p*-convexification $E^{(p)}$ of *E* with the norm $||x||_{E^{(p)}} = (||x|^p||_E)^{1/p}$.
- The study of spaces E_φ: A. P. Calderón, G. Ya. Lozanovskiĭ, Z. Altshuler, J. Cerda, P. Foralewski, H. Hudzik, A. Kamińska, L. Maligranda, M. Mastyło, P.K. Lin, V.I. Ovchinnikov, Y. Raynaud, S. Reisner and others.

 For the Young function φ we define its right-continuous inverse in a generalized sense by the formula:

$$\varphi^{-1}(v) = \inf\{u \ge 0 : \varphi(u) > v\} \text{ for } v \in [0, \infty) \quad (16)$$

and
$$\varphi^{-1}(\infty) = \lim_{v \to \infty} \varphi^{-1}(v). \quad (17)$$

 For the Young function φ we define its right-continuous inverse in a generalized sense by the formula:

$$\varphi^{-1}(v) = \inf\{u \ge 0 : \varphi(u) > v\} \text{ for } v \in [0, \infty) \quad (16)$$

and
$$\varphi^{-1}(\infty) = \lim_{v \to \infty} \varphi^{-1}(v). \quad (17)$$

• The symbol

$$\varphi_1^{-1}\varphi_2^{-1}\approx\varphi^{-1}$$

for all arguments [for large arguments] (for small arguments) means that there are constants C, D > 0 [there are constants $C, D, u_0 > 0$] (there are constants $C, D, u_0 > 0$) such that the inequalities

$$C\varphi_1^{-1}(u)\varphi_2^{-1}(u) \le \varphi^{-1}(u) \le D\varphi_1^{-1}(u)\varphi_2^{-1}(u)$$
 (18)

hold for all u > 0 [for all $u \ge u_0$] (for all $0 < u \le u_0$), respectively.

Let E be a Banach ideal space with the Fatou property and supp $E = \Omega$. Suppose that for two Young functions φ , φ_1 there is a Young function φ_2 such that one of the following conditions holds:

(i)
$$\varphi_1^{-1}\varphi_2^{-1} \approx \varphi^{-1}$$
 for all arguments,
(ii) $\varphi_1^{-1}\varphi_2^{-1} \approx \varphi^{-1}$ for large arguments and $L^{\infty} \hookrightarrow E$,
(iii) $\varphi_1^{-1}\varphi_2^{-1} \approx \varphi^{-1}$ for small arguments and $E \hookrightarrow L^{\infty}$.
Then the factorization $E_{\varphi_1} \odot M(E_{\varphi_1}, E_{\varphi}) = E_{\varphi}$ with equivalent norms is valid.

• Applying results concerning the space of multipliers we get

Corollary

Let φ , φ_1 be two Orlicz functions, and let E Banach an ideal space with the Fatou property and supp $E = \Omega$. If the function $f_v(u) = \frac{\varphi(uv)}{\varphi_1(u)}$ is non-increasing on $(0, \infty)$ for any v > 0, then the factorization

$$E_{\varphi_1} \odot M(E_{\varphi_1}, E_{\varphi}) = E_{\varphi}$$

is valid with equivalent norms.

• Applying results concerning the space of multipliers we get

Corollary

Let φ , φ_1 be two Orlicz functions, and let E Banach an ideal space with the Fatou property and supp $E = \Omega$. If the function $f_v(u) = \frac{\varphi(uv)}{\varphi_1(u)}$ is non-increasing on $(0, \infty)$ for any v > 0, then the factorization

$$E_{arphi_1} \odot M(E_{arphi_1}, E_{arphi}) = E_{arphi}$$

is valid with equivalent norms.

• It is enough to take the function φ_2 as $\varphi_2 = \varphi \ominus \varphi_1 = \sup_{\nu>0} \{\varphi(u\nu) - \varphi_1(\nu)\}$ and used the fact proved in [KLM2013] showing that $\varphi_1^{-1}\varphi_2^{-1} \approx \varphi^{-1}$ for all arguments.

• For any quasi-concave function ϕ on I the *Marcinkiewicz function* space M_{ϕ} is defined by the norm

$$\|x\|_{M_{\phi}} = \sup_{t \in I} \phi(t) \, x^{**}(t), \ x^{**}(t) = \frac{1}{t} \int_0^t x^*(s) ds.$$

• For any quasi-concave function ϕ on I the Marcinkiewicz function space M_{ϕ} is defined by the norm

$$\|x\|_{M_{\phi}} = \sup_{t \in I} \phi(t) x^{**}(t), \quad x^{**}(t) = \frac{1}{t} \int_0^t x^*(s) ds.$$

• For any concave function ϕ on I the Lorentz function space Λ_{ϕ} given by the norm

$$\|x\|_{\Lambda_{\phi}} = \int_{I} x^{*}(t) d\phi(t) = \phi(0^{+}) \|x\|_{L^{\infty}(I)} + \int_{I} x^{*}(t) \phi'(t) dt.$$

 For any quasi-concave function φ on I the Marcinkiewicz function space M_φ is defined by the norm

$$\|x\|_{M_{\phi}} = \sup_{t \in I} \phi(t) x^{**}(t), \quad x^{**}(t) = \frac{1}{t} \int_0^t x^*(s) ds.$$

• For any concave function ϕ on I the Lorentz function space Λ_ϕ given by the norm

$$\|x\|_{\Lambda_{\phi}} = \int_{I} x^{*}(t) d\phi(t) = \phi(0^{+}) \|x\|_{L^{\infty}(I)} + \int_{I} x^{*}(t) \phi'(t) dt.$$

We have

$$\Lambda_{f_E} \stackrel{1}{\hookrightarrow} E \stackrel{1}{\hookrightarrow} M_{f_E}. \tag{19}$$

• Consider also another Marcinkiewicz space M_{ϕ}^* than the space M_{ϕ} as

$$M_{\phi}^* = M_{\phi}^*(I) = \{ x \in L^0(I) : \|x\|_{M_{\phi}^*} = \sup_{t \in I} \phi(t) x^*(t) < \infty \}.$$

This Marcinkiewicz space need not be a Banach space and always we have $M_{\phi} \stackrel{1}{\hookrightarrow} M_{\phi}^*$. Moreover, $M_{\phi}^* \stackrel{C}{\hookrightarrow} M_{\phi}$ if and only if

$$\int_0^t \frac{1}{\phi(s)} \, ds \le C \frac{t}{\phi(t)} \text{ for all } t \in I.$$
(20)

• The lower index $p_{\phi,I}$ and upper index $q_{\phi,I}$ of a function ϕ on I are numbers defined as

$$p_{\phi,I} = \lim_{t \to 0^+} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ q_{\phi,I} = \lim_{t \to \infty} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ m_{\phi,I}(t) = \sup_{s \in I, st \in I} \frac{\phi(st)}{\phi(s)}$$

It is known that for a quasi-concave function ϕ on $[0, \infty)$ we have
 $0 \le p_{\phi,[0,\infty)} \le p_{\phi,[0,1]} \le q_{\phi,[0,1]} \le q_{\phi,[0,\infty)} \le 1.$

• The lower index $p_{\phi,I}$ and upper index $q_{\phi,I}$ of a function ϕ on I are numbers defined as

$$p_{\phi,I} = \lim_{t \to 0^+} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ q_{\phi,I} = \lim_{t \to \infty} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ m_{\phi,I}(t) = \sup_{s \in I, st \in I} \frac{\phi(st)}{\phi(s)}.$$

It is known that for a quasi-concave function ϕ on $[0, \infty)$ we have
 $0 \le p_{\phi,[0,\infty)} \le p_{\phi,[0,1]} \le q_{\phi,[0,1]} \le q_{\phi,[0,\infty)} \le 1.$
We also need for a differentiable increasing function ϕ on I with
 $\phi(0^+) = 0$ the *Simonenko indices*
 $t\phi'(t) \qquad t\phi'(t)$

$$s_{\phi,I} = \inf_{t\in I} \frac{t\phi'(t)}{\phi(t)}, \ \sigma_{\phi,I} = \sup_{t\in I} \frac{t\phi'(t)}{\phi(t)}.$$

They satisfy $0 \leq s_{\phi,I} \leq p_{\phi,I} \leq q_{\phi,I} \leq \sigma_{\phi,I}$.

۲

 The lower index p_{φ,I} and upper index q_{φ,I} of a function φ on I are numbers defined as

$$p_{\phi,I} = \lim_{t \to 0^+} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ q_{\phi,I} = \lim_{t \to \infty} \frac{\ln m_{\phi,I}(t)}{\ln t}, \ m_{\phi,I}(t) = \sup_{s \in I, st \in I} \frac{\phi(st)}{\phi(s)}.$$

It is known that for a quasi-concave function ϕ on $[0, \infty)$ we have
 $0 \le p_{\phi,[0,\infty)} \le p_{\phi,[0,1]} \le q_{\phi,[0,1]} \le q_{\phi,[0,\infty)} \le 1.$
We also need for a differentiable increasing function ϕ on I with
 $\phi(0^+) = 0$ the *Simonenko indices*

$$s_{\phi,I} = \inf_{t \in I} rac{t \phi'(t)}{\phi(t)}, \ \sigma_{\phi,I} = \sup_{t \in I} rac{t \phi'(t)}{\phi(t)}.$$

They satisfy $0 \le s_{\phi,l} \le p_{\phi,l} \le q_{\phi,l} \le \sigma_{\phi,l}$. • The *Boyd indices* of *E* are defined by

$$\alpha_E = \lim_{s \to 0^+} \frac{\ln \|D_s\|_{E \to E}}{\ln s}, \beta_E = \lim_{s \to \infty} \frac{\ln \|D_s\|_{E \to E}}{\ln s}.$$

Paweł Kolwicz POLAND ()

Let ϕ, ψ be a non-decreasing, concave functions on I with $\phi(0^+) = \psi(0^+) = 0$. Suppose $\frac{\psi(t)}{\phi(t)}$ is a non-decreasing function on I.

• If $s_{\phi,l} > 0$ and $s_{\psi,l} > 0$, then

$$\Lambda_{\phi} \odot \mathcal{M}(\Lambda_{\phi}, \Lambda_{\psi}) = \Lambda_{\psi}.$$

Moreover, for any symmetric space F on I with the fundamental function $f_F(t) = \psi(t)$ and under the above assumptions on ϕ and ψ we have

$$\Lambda_{\phi} \odot M(\Lambda_{\phi}, F) = F$$
 if and only if $F = \Lambda_{\psi}$. (21)

Let ϕ, ψ be a non-decreasing, concave functions on I with $\phi(0^+) = \psi(0^+) = 0$. Suppose $\frac{\psi(t)}{\phi(t)}$ is a non-decreasing function on I.

• If $\sigma_{\phi,l} < 1$ and $\sigma_{\psi,l} < 1$, then

 $M_{\phi} \odot M(M_{\phi}, M_{\psi}) = M_{\psi}.$

Moreover, for any symmetric space E on I having Fatou property, with the fundamental function $f_E(t) = \phi(t)$ and under the above assumptions on ϕ and ψ we have

 $E \odot M(E, M_{\psi}) = M_{\psi}$ if and only if $E = M_{\phi}$. (22)

Let ϕ, ψ be a non-decreasing, concave functions on I with $\phi(0^+) = \psi(0^+) = 0$. Suppose $\frac{\psi(t)}{\phi(t)}$ is a non-decreasing function on I.

• If $\sigma_{\phi,l} < 1$ and $\sigma_{\psi,l} < 1$, then

 $M_{\phi} \odot M(M_{\phi}, M_{\psi}) = M_{\psi}.$

Moreover, for any symmetric space E on I having Fatou property, with the fundamental function $f_E(t) = \phi(t)$ and under the above assumptions on ϕ and ψ we have

 $E \odot M(E, M_{\psi}) = M_{\psi}$ if and only if $E = M_{\phi}$. (22)

• If $\sigma_{\phi,l} < 1$, $s_{\psi,l} > 0$ and $s_{\psi/\phi,l} > 0$, then

 $M_{\phi} \odot M(M_{\phi}, \Lambda_{\psi}) = \bigwedge_{\langle e \rangle \to \langle e \rangle} (23)_{\langle e \rangle}$

Let ϕ be an increasing, concave function on I with $0 < p_{\phi,l} \leq q_{\phi,l} < 1$.

• Suppose that F is a symmetric space on I with the lower Boyd index $\alpha_F > q_{\phi,I}$ and such that $M(M_{\phi}^*, F) \neq \{0\}$. Then

 $F = M_{\phi}^* \odot M(M_{\phi}^*, F) = M_{\phi} \odot M(M_{\phi}, F).$

Thank You very much for the attention

< □ > < ---->

æ

Let ϕ be an increasing, concave function on I with $0 < p_{\phi,l} \leq q_{\phi,l} < 1$.

• Suppose that *E* is a symmetric space on *I* with the Fatou property, which Boyd indices satisfy $0 < \alpha_E \leq \beta_E < p_{\phi,I}$ and such that $M(E, \Lambda_{\phi}) \neq \{0\}$. Then

$$\Lambda_{\phi,1} = E \odot M(E, \Lambda_{\phi}).$$

• the Lorentz space $\Lambda_{\phi,1}$ on I defined as

$$\Lambda_{\phi,1} = \{ x \in L^0(I) : \|x\|_{\Lambda_{\phi,1}} = \int_I x^*(t) \frac{\phi(t)}{t} \, dt < \infty \}.$$

Space $\Lambda_{\phi,1}$ is a Banach space and if $\phi(t) \leq at\phi'(t)$ for all $t \in I$, then $\Lambda_{\phi,1} \stackrel{1}{\hookrightarrow} \Lambda_{\phi} \stackrel{a}{\hookrightarrow} \Lambda_{\phi,1}$.