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Introduction and some basic results
Orlicz-Lorentz spaces

Motivation.

Theorem [Betiuk-Pilarska & Prus, 2008]

Suppose that X is a weakly orthogonal Banach lattice with the char-
acteristic of monotonicity ε0,m(X ) < 1. Then X has weak normal
structure.

Recall that a Banach lattice X is said to be weakly orthogonal if

liminf
n→∞

liminf
m→∞

‖|xn| ∧ |xm|‖ = 0

whenever (xn) is a sequence in X which converges weakly to 0.
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Definition

A normed space (X , ‖.‖) with a partial order ≤ is said to be
a normed lattice (X ,≤, ‖.‖) whenever the following conditions
are satisfied:

a) x ≤ y ⇒ x + z ≤ y + z ∀ x , y , z ∈ X ,

b) (x ≥ 0 ∧ a ∈ R+)⇒ ax ≥ 0,

c) any two elements x , y ∈ X have the least upper bound
(x ∨ y = sup(x , y)) and the greatest lower bound
(x ∧ y = inf(x , y)),

d) |x | ≤ |y | ⇒ ‖x‖X ≤ ‖y‖X , where |x | = x ∨ (−x) for every
x ∈ X .

If in addition X is a Banach space, then (X ,≤, ‖.‖) is called
a Banach lattice.
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Denote X+ = {x ∈ X : x ≥ 0} and

S+(X ) = S(X ) ∩ X+.

Definition

A Banach lattice X is said to be strictly monotone (X ∈ (SM)), if for

all x , y ∈ X+ such that y ≤ x and y 6= x , we have ‖y‖ < ‖x‖.

Equivalently: X is strictly monotone, if for all y ∈ X+ and x ∈ S+(X )

such that y ≤ x and y 6= x , we have ‖x − y‖ < ‖x‖.

Definition

A Banach lattice X is said to be uniformly monotone (X ∈ (UM)), if

∀
0<ε<1

∃
δ(ε)∈(0,1)

∀
0≤y≤x , ‖x‖=1

(‖y‖ ≥ ε)⇒ ‖x − y‖ ≤ 1−δ(ε). (1)
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Definition

Let X be a Banach lattice. The function δm,X : [0, 1]→ [0, 1] de-
fined by

δm,X (ε) = inf{1− ‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = 1, ‖y‖ ≥ ε} (2)

is said to be the (lower) modulus of monotonicity of X .

Remark

1) X ∈ (UM)⇔ δm,X (ε) > 0 for every ε ∈ (0, 1].

2) X ∈ (SM)⇔ δm,X (1) = 1.
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Fact

Let us define for any ε ∈ [0, 1]:

δS,≥
m,X (ε) = inf{1− ‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = 1, ‖y‖ ≥ ε},

δS,=
m,X (ε) = inf{1− ‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = 1, ‖y‖ = ε},

δB,≥
m,X (ε) = inf{1− ‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ ≤ 1, ‖y‖ ≥ ε},

δB,=
m,X (ε) = inf{1− ‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ ≤ 1, ‖y‖ = ε}.

Then

δS ,≥
m,X (ε) = δS ,=

m,X (ε) = δB,≥
m,X (ε) = δB,=

m,X (ε) ∀ ε ∈ [0, 1].
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Fact [Kurc, 1993]

The modulus of monotonicity δm,X (.) of a normed lattice X is:

a nondecreasing function on the interval [0, 1],

a convex function on the interval [0, 1], which is continuous
on the interval [0, 1).

Remark

The modulus of monotonicity δm,X (.) needn’t be left continuous at
the point 1.
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Definition

Let X be a Banach lattice. The number ε0,m(X ) ∈ [0, 1] defined as

sup{ε ∈ [0, 1] : δm,X (ε) = 0} (3)

is said to be the characteristic of monotonicity of X .

Remark

ε0,m(X ) = sup{ε ∈ [0, 1] : δm,X (ε) = 0} = inf{ε ∈ [0, 1] : δm,X (ε) > 0},
where inf ∅ := 1.

Remark

X ∈ (UM)⇔ ε0,m(X ) = 0.
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Theorem [Joint with Foralewski, Hudzik and Krbec, 2010]

For any Banach lattice X the following formula for the characteristics of
monotonicity hold true:

ε0,m(X ) = sup{lim sup
n→∞

‖xn − yn‖ : ‖xn‖ = 1, 0 ≤ yn ≤ xn ∀
n∈N

, ‖yn‖ → 1}. (4)

Corollary

In any finite dimensional Banach lattice X the characteristic of monotoni-
city is just the length of the longest order interval lying in the intersection
of the unit sphere of X and X+, i.e.

ε0,m(X ) = sup{‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = ‖y‖ = 1} (5)

= max{‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = ‖y‖ = 1}.
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Theorem [Joint with Foralewski, Hudzik and Krbec, 2010]

For any Banach lattice X the following equality is true

ε0,m(X ) = 1− lim
ε→1−

δm,X (ε). (6)

Moreover,
δm,X (1− δm,X (ε)) = 1− ε (7)

for arbitrary ε ∈ (ε0,m(X ), 1] if ε0,m(X ) < 1 as well as also in the case
when ε = ε0,m(X ) = 1.

Remark

In equality (6), lim
ε→1−

δm,X (ε) cannot be replaced by δm,X (1). There are

examples of Banach lattices X for which δm,X (ε) = 0 for any ε ∈ [0, 1)
and δm,X (1) = 1.
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Example

For any Lorentz space Λω = {x ∈ L0 : ‖x‖ =
∫∞

0
x∗(t)ω(t)dt <∞} such

that the weight function ω is not regular but
∫∞

0
ω(t)dt =∞ (for example

ω(t) = min(1, 1/t) for t ∈ [0,∞)), we have

δm,Λω
(1−) = 0 < 1 = δm,Λω

(1).
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Corollary

For arbitrary Banach lattice X the following formulas hold true

ε0,m(X ) = lim
ε→1−

(sup {‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = 1, ‖y‖ ≥ ε})

= lim
ε→1−

(sup {‖x − y‖ : 0 ≤ y ≤ x , ‖x‖ = 1, ‖y‖ = ε}) .

Rados law Kaczmarek On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces



Introduction and some basic results
Orlicz-Lorentz spaces

Monotonicity modulus and characteristic
A formula for the characteristic of monotonicity ε0,m(X )
Modulus and characteristic of monotonicity in Köthe spaces

Let us denote by:

(T ,Σ, µ) a positive, complete and σ−finite measure space,

L0 = L0(T ,Σ, µ) the space of all (equivalence classes of) real-valued and
Σ−measurable functions defined on T ,

E = (E ,≤, ‖ · ‖E ) denotes a Köthe space over the measure space

(T ,Σ, µ), that is E is a Banach subspace of L0 which satisfies the

following conditions:

(i) If |x | ≤ |y |, y ∈ E and x ∈ L0, then x ∈ E and ‖x‖E ≤ ‖y‖E .
(ii) There exists a function x ∈ E which is strictly positive µ−a.e.

in T .
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Let us define for a Köthe space E the modulus δ̂m,E : [0, 1] → [0, 1] by the
formula

δ̂m,E (ε) = inf
{

1− ‖x − xχA‖E : x ≥ 0, ‖x‖E = 1,A ∈ Σ, ‖xχA‖E ≥ ε
}
.

The characteristic of monotonicity ε̂0,m(E) corresponding to the modulus δ̂m,E

is defined by

ε̂0,m(E) = sup
{
ε ∈ [0, 1] : δ̂m,E (ε) = 0

}
= inf

{
ε ∈ [0, 1] : δ̂m,E (ε) > 0

}
, (8)

where inf ∅ = 1.

Rados law Kaczmarek On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces



Introduction and some basic results
Orlicz-Lorentz spaces

Monotonicity modulus and characteristic
A formula for the characteristic of monotonicity ε0,m(X )
Modulus and characteristic of monotonicity in Köthe spaces

The modulus δ̂m,E is nondecreasing with respect to ε ∈ [0, 1] and

δm,X (ε) ≤ δ̂m,E (ε) ≤ ε ∀ ε ∈ [0, 1]. (9)

It is easy to see that

δ̂m,E (ε) = inf
{

1− ‖x − xχA‖E : x ≥ 0, ‖x‖E = 1,A ∈ Σ, ‖xχA‖E = ε
}

= 1− sup
{
‖x − xχA‖E : x ≥ 0, ‖x‖E = 1,A ∈ Σ, ‖xχA‖E ≥ ε

}
= 1− sup

{
‖x − xχA‖E : x ≥ 0, ‖x‖E = 1,A ∈ Σ, ‖xχA‖E = ε

}
.
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Proposition [Joint with Foralewski, Hudzik and Krbec, 2010]

For arbitrary Köthe space E the following formula holds true

ε̂0,m(E) = sup

{
lim sup

n→∞

∥∥∥xnχA
′
n

∥∥∥
E

: (xn) ⊂ S+(E), (An) ⊂ Σ, ‖xnχAn‖E → 1

}
.

Lemma (*)

If E is a Köthe space then for any positive ε and δ satisfying the
condition ε + δ < 1 the inequality δm,E (ε + δ) ≥ δδ̂m,E (ε) holds
true.
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Theorem [Joint with Foralewski, Hudzik and Krbec, 2010]

For arbitrary Köthe space E we have the equality

ε0,m(E ) = ε̂0,m(E ).

Corollary

For arbitrary Köthe space X the following formulas are true

ε0,m(E) = ε̂0,m(E) = lim
ε→1−

sup
{∥∥xχA

′
∥∥

E
: x ∈ S+(E),A ∈ Σ, ‖xχA‖E ≥ ε

}
= lim

ε→1−
sup
{∥∥xχA

′
∥∥

E
: x ∈ S+(E),A ∈ Σ, ‖xχA‖E = ε

}
.
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Let in the following L0 = L0([0, γ)) be the space of all (equivalence
classes of) Lebesgue measurable real-valued functions defined on the
interval [0, γ), where γ ≤ ∞. Denoting the Lebesgue measure by
m, for any x ∈ L0 we define its distribution function µx : [0,+∞)→
[0, γ] by

µx (λ) = m{t ∈ [0, γ) : |x(t)| > λ}

and its nonincreasing rearrangement x∗ : [0, γ)→ [0,∞] as

x∗(t) = inf{λ ≥ 0 : µx (λ) ≤ t}

(under the convention inf ∅ =∞). We say that two functions x , y ∈
L0 are equimeasurable if µx (λ) = µy (λ) for all λ ≥ 0. It is obvious
that equimeasurability of x and y gives the equality x∗ = y∗.
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Definition

A Köthe space E , where E ⊂ L0, is called a symmetric space if E
is rearrangement invariant which means that if x ∈ E , y ∈ L0 and
x∗ = y∗, then y ∈ E and ‖x‖ = ‖y‖.

Definition

Let ω : [0, γ) → R+ be a non-increasing and locally integrable
function (not identically 0), called a weight function. We say that
a weight function ω is regular if there exists η > 0 such that∫ 2t

0
ω(s)ds ≥ (1 + η)

∫ t

0
ω(s)ds

for any t ∈ [0, γ/2).
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In the whole presentation Φ denotes an Orlicz function, that is,
Φ : [−∞,∞] → [0,∞] (our definition is extended from R into
Re by assuming Φ(−∞) = Φ(∞) = ∞) and Φ is convex, even,
vanishing and continuous at zero, left continuous on (0,∞) (that
is, in particular, limu→(b(Φ))− Φ(u) = Φ(b(Φ)), where

b(Φ) = sup {u ≥ 0: Φ(u) <∞})

and not identically equal to zero on (−∞,∞).
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Definition

We say that an Orlicz function Φ satisfies condition ∆2 for all
u ∈ R+ (respectively, at infinity) if there is K > 0 such that the
inequality Φ(2u) ≤ K Φ(u) holds for all u ∈ R (respectively, for all
u ∈ R satisfying |u| ≥ u0 with some u0 > 0 such that Φ(u0) <
∞). We write then Φ ∈ ∆2(R+) (Φ ∈ ∆2(∞)), respectively.

In the following we will use the parameter a(Φ) for the Orlicz func-
tion Φ defined by

a(Φ) := sup{u > 0: Φ(u) = 0}.
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Given any Orlicz function Φ and any non-increasing weight function
ω, we define on L0 the convex modular

IΦ,ω (x) =

∫ γ

0
Φ(x∗(t))ω(t)dt,

and the Orlicz-Lorentz space

ΛΦ,ω = ΛΦ,ω([0, γ)) = {x ∈ L0 : IΦ,ω (λx) <∞ for some λ > 0},

which becomes a Banach symmetric space under the Luxemburg
norm

‖x‖ΛΦ,ω
= inf{λ > 0 : IΦ,ω (x/λ) ≤ 1}.
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In proofs of our results three lemmas that are presented below were
applied.

Lemma [Kamińska, 1990]

Assume that |x(t)| < |y(t)| for t ∈ A ⊂ [0, γ), where µ(A) > 0 and
|x(t)| ≤ |y(t)| for m-a.e. t ∈ [0, γ). If µx (λ) < ∞ for any λ > 0,
then x∗(t) < y∗(t) for t ∈ B, where B ⊂ [0, γ) has a positive
measure.
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Lemma

Let Φ be an Orlicz function with a(Φ) > 0 and satisfying condition
∆2(∞) and let c ∈ (a(Φ),+∞). Then for any ε ∈ (0, 1) there exists
δ(ε) ∈ (0, 1) such that if x ∈ ΛΦ,ω, |x(t)| ≥ c for m-a.e. t ∈ [0, γ)
and IΦ,ω (x) ≤ δ(ε), then ‖x‖ΛΦ,ω

≤ ε.

Lemma

Let γ < ∞ and Φ ∈ ∆2(∞). Then for any ε ∈ (0, 1) there exists
p(ε) ∈ (0, 1) such that ‖x‖ΛΦ,ω

≤ 1 − p(ε) whenever IΦ,ω (xn) ≤
1− ε.
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Theorem

Let γ = ∞. If the Orlicz function Φ satisfies condition ∆2(R)
and the weight function ω is regular, then ε0,m (ΛΦ,ω) = 0. In the
opposite case, ε0,m (ΛΦ,ω) = 1.

Remark

It is worth noticing here that if Φ ∈ ∆2(R) and
∫∞

0 ω(t)dt =∞,
then ΛΦ,ω is strictly monotone (even if ω is not regular), whence
δm,ΛΦ,ω

(1) = 1.
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Theorem

Suppose that 0 < γ < ∞, Φ is an Orlicz function satisfying condi-
tion ∆2(∞) and define γ0 := sup{t ∈ [0, γ) : ω(t) > 0}, where ω
is a weight function on [0, γ). Let us denote by u(Φ, ω) the positive
number satisfying the equality Φ(u(Φ, ω))

∫ γ0

0 ω(t)dt = 1. More-
over, in the case when γ0 < γ, let us define the positive number
v(Φ, ω) by the formula Φ(v(Φ, ω))

∫ γ−γ0

0 ω(t)dt = 1. Then the
following assertions are true:

(i) If γ0 = γ, then δm,ΛΦ,ω
(1) = 1− a(Φ)

u(Φ,ω) .

(ii) If γ0 ∈ ( 1
2γ, γ), then

δm,ΛΦ,ω
(1) = 1−max

(
a(Φ)

u(Φ, ω)
,

u(Φ, ω)

v(Φ, ω)

)
.

(iii) If γ0 ∈ (0, 1
2γ], then δm,ΛΦ,ω

(1) = 0. Next Theorem
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The example presented below shows how the value δm,ΛΦ,ω
(1) can

be varying in dependence on γ0, γ and a(Φ).

Example 3

Let γ > 0, Φ(u) = max{0, u − 1} for any u ≥ 0, ω(t) = 1 for any
t ∈ [0,min(1, γ)) and ω(t) = 0 for any t ∈ [1, γ) whenever γ > 1.
Then a(Φ) = 1 and u(Φ, ω) = max(( 1

γ + 1), 2). By the above Theorem,

statements ((iii) and (i)), we get the equalities

δm,ΛΦ,ω
(1) = 0 for γ ≥ 2 and δm,ΛΦ,ω

(1) =
1

γ + 1
when γ ≤ 1.

Assume now that γ ∈ (1, 2). Then v(Φ, ω) = γ
γ−1 and, by the above

Theorem, statement (ii), we have

δm,ΛΦ,ω
(1) =

1

2
for γ ∈ (1,

4

3
)

and δm,ΛΦ,ω
(1) =

2− γ
γ

for γ ∈ (
4

3
, 2).
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Theorem

Let 0 < γ < ∞ and the numbers γ0, u(Φ, ω) and v(Φ, ω) be defined as
in the previous Theorem. Then the following statements hold true:

(i) If Φ ∈ ∆2(∞), a(Φ) = 0, γ0 = γ and the weight function ω is
regular, then ε0,m (ΛΦ,ω) = 0.

(ii) If Φ ∈ ∆2(∞), a(Φ) > 0, γ0 = γ and the weight function ω is
regular, then

ε0,m (ΛΦ,ω) =
a(Φ)

u(Φ, ω)
.

(iii) If Φ ∈ ∆2(∞), γ0 ∈ ( 1
2γ, γ) and the weight function ω is regular,

then

ε0,m (ΛΦ,ω) = max

(
a(Φ)

u(Φ, ω)
,

u(Φ, ω)

v(Φ, ω)

)
.

(iv) If Φ /∈ ∆2(∞) or the weight function ω is not regular, then
ε0,m (ΛΦ,ω) = 1.
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Corollary

Let LΦ be an Orlicz function space. If µ(T ) <∞, then the
following statements hold true:

(i) If Φ ∈ ∆2(∞) and a(Φ) = 0, then ε0,m(LΦ) = 0.

(ii) If Φ ∈ ∆2(∞) and a(Φ) > 0, then ε0,m(LΦ) = a(Φ)
c(Φ) , where

c(Φ) is the nonnegative constant satisfying the equality
Φ(c(Φ))µ(T ) = 1.

(iii) If Φ /∈ ∆2(∞), then ε0,m(LΦ) = 1.

Theorem

Let LΦ be an Orlicz function space. If µ(T ) =∞, then
ε0,m(LΦ) = 0 whenever Φ ∈ ∆2(R) and ε0,m(LΦ) = 1 otherwise.
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Thank you for your attention
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