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Theorem (S. Banach, S. Mazur). Let T be a nonempty

set and let Φ be a function space of mappings ϕ : T −→ T

such that

x ◦ ϕ ∈ B(T,R) for all x ∈ B(T,R).

Then there exists a positive linear functional

m : B(T,R) −→ R such that m(χT ) = 1 and

m(x ◦ ϕ) = m(x) for x ∈ B(T,R), ϕ ∈ Φ,

if and only if

sup

{
n∑
i=1

(xi(t)− xi ◦ ϕi(t)) : t ∈ T

}
≥ 0

for every xi ∈ B(T,R), ϕi ∈ Φ, i = 1, ..., n, n ∈ N.

In particular, the latter condition is satisfied provided

that the family Φ consists of commuting functions.
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Theorem (J. von Neumann). Let (G,+) be a locally

compact group admitting a (bilaterally) invariant mean

and let λ stands for the left (right) Haar measure on the

group (G,+). Then there exists a finitely additive exten-

sion µ : 2G −→ [0,∞] of the measure λ onto the power set

of G such that

µ(x + A) = µ(A) for x ∈ G, A ⊂ G,

(resp.:

µ(A + x) = µ(A) for x ∈ G, A ⊂ G ).

In the sequel, by an amenable semigroup we shall understand any

semigroup admitting an invariant mean.
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Now, given an amenable group (with a bilaterally in-

variant mean m) put

N := {A ⊂ G : m(χA) = 0} .

Then one has:

1. ∅ ∈ N and G 6∈ N

2. A,B ∈ N =⇒ A ∪B ∈ N

3. (A ∈ N and B ⊂ A) =⇒ B ∈ N

4. (A ∈ N and x ∈ G) =⇒ x + A ∈ N and A + x ∈ N .
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If (G,+) is a group and a family N ⊂ 2G enjoyes the

properties 1. - 4. along with

5. for every A ∈ N one has −A ∈ N ,

then the family N is used to be called a proper linearly
invariant set ideal (in short: a p.l.i. ideal).
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Lemma. Let (G,+) a group and letR ⊂ 2G be a nonempty

collection of sets hereditary with respect to descending in-

clusions and such that for every E ∈ R no finite union of

the sets of the form

x + (E ∪ (−E)) + y, x, y ∈ G,

coincides with G. Then R is contained in a p.l.i ideal.
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Corollary 1. Let (G,+) be a group endowed with a

translation invariant metric such that diamG = ∞. Then

any set E ⊂ G such that diamE < ∞ yields a member of

some p.l.i. ideal in (G,+).

Corollary 2. In any nontrivial normed linear space

(X, ‖ · ‖) each bounded set yields a member of some p.l.i.

ideal of subsets of X.

Corollary 3. Let (G,+) be an amenable group and let

H ⊂ G be its subgroup with infinite index. Then H yields

a member of some p.l.i ideal of subsets of G.

Corollary 4. In any real linear space each linear va-

riety (in particular, each proper linear subspace) yields a

member of some p.l.i. ideal.

Corollary 5. For each nontrivial linear functional f

on a real or complex linear space X every set of the form

f−1(K), where K stands for a bounded subset of the field

in question, yields a member of some p.l.i. ideal of subsets

of X.
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Let (G,+) be an Abelian Polish topological group and

let Aµ(G) denotes the completion of the σ-field B(G) of all

Borel sets with respect to a given measure µ : B(G) −→
[0,∞]. Let further

A(G) :=
⋂
{Aµ(G) : µ is a probabilistic measure on B(G) }

and

H0(G) := {A ∈ Aµ(G) : µ(A + x) = 0, x ∈ G,

for some probabilistic measure on A(G) }

(Haar zero sets)

and

C0(G) := {B ⊂ G : B ⊂ A for a set A ∈ H0(G) }

(Christensen zero sets) .

Fact. In any Abelian Polish topological group the fa-

mily C0(G) of all Christensen zero sets yields a p.l.i σ-ideal.
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Theorem (F. C. Sánchez, 1999). Let (G,+) be an Abelian

group with an invariant mean m and let B ⊂ G be a set

such that m(G \ B) = 0. Let further % : G −→ R be a given

function. Then, assuming that a function f : G −→ R
satisfies any of the following three conditions:

(i) |f (x + y)− f (x)− f (y)| ≤ %(x)

for all x, y, x + y ∈ B;

(ii) |f (x + y)− f (x)− f (y)| ≤ %(x) + %(y)− %(x + y)

for all x, y, x + y ∈ B;

(iii) |f (
∑n

i=1 xi)−
∑n

i=1 f (xi)| ≤
∑n

i=1 %(xi)

for all x1, ...xn, x1 + · · · xn ∈ B and n ∈ N,

there exists an additive function a : G −→ R such that

|f (x)− a(x)| ≤ %(x)

for all x ∈ B.
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Theorem. Let (G,+) be a group admitting an invariant

mean m and let B ⊂ G be a set such that m(G\B) = 0. Let

further (H,+) be an Abelian group admitting sufficiently

many real characters. If a map a : B −→ H satisfies the

condition

x, y, x + y ∈ B ⇒ a(x + y) = a(x) + a(y) ,

then there exists exactly one homomorphism A : G −→ H

such that

A(x) = a(x) for all x ∈ B.
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Theorem (F. C. Sánchez, 1999). Let (G,+) be an Abelian

group admitting an invariant mean m and let B ⊂ G be

a set such that m(G \ B) = 0. Let further a real Banach

space (Y, ‖ · ‖) with a continuous projection π of its second

dual onto Y and a function % : G −→ R be given. Then,

assuming that a function f : G −→ Y satisfies any of the

following two conditions:

(i) ‖f (x + y)− f (x)− f (y)‖ ≤ %(x)

for all x, y, x + y ∈ B;

(ii) ‖f (x + y)− f (x)− f (y)‖ ≤ %(x) + %(y)− %(x + y)

for all x, y, x + y ∈ B,

then there exists an additive mapping a : G −→ Y such

that

‖f (x)− a(x)‖ ≤ 2‖π‖%(x)

for all x ∈ B.
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Theorem (F. C. Sánchez, 1999). Let (G,+) be an Abelian

group admitting an invariant mean m and let B ⊂ G

be a set such that m(G \ B) = 0. Given two functions

α, β : B −→ R such that α ≤ β and

x, y, x + y ∈ B ⇒ α(x + y) ≥ α(x) + α(y) ,

as well as

x, y, x + y ∈ B ⇒ β(x + y) ≤ β(x) + β(y) ,

there exists an additive functional a : G −→ R such that

α(x) ≤ a(x) ≤ β(x) for all x ∈ B.
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Theorem. Let X be a real linear topological space and

let M be a mean on the space B(S,R), where S is a given

nonempty set. Let further

BM(S,X) :=f ∈B(S,X) :
∨

M(f)∈X

∧
x∗∈X∗

x∗(M(f )) = M(x∗◦f )

 .

Then BM(S,X) yields a linear subspace of the space B(S,X)

and a mapping

BM(S,X) 3 f 7−→M(f ) ∈ X

is well defined, linear and satisfies the condition

M(f ) ∈ cl conv f (S) , f ∈ BM(S,X) .
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Theorem. Let X stand for a real locally convex lin-

ear topological space and let M be a mean on the space

B(S,R), where S is a given nonempty set. If a function

f : S −→ X enjoyes the property that

the set cl conv f (S) is weakly compact in X ,

then there exists exactly one element M(f ) ∈ cl convf (S)

such that

x∗(M(f )) = M(x∗◦f )

for all x∗ ∈ X∗.
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Proposition. Let X stand for a real locally convex

linear topological space and let M be a mean on the space

B(S,R), where S is a given nonempty set. Then the set

CW(S,X) :=

{f : S −→ X : cl convf (S) is weakly compact in X}

yields a linear subspace of the space B(S,X).

If, moreover, (S,+) forms a semigroup, then that sub-

space is closed under translation in argument.
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Theorem. Let X stand for a real locally convex linear

topological space and let (S,+) be a semigroup admitting

a left (right) invariant mean on the space B(S,R). The the

linear space CW(S,X) is closed under left (right) transla-

tions in arument and admits a left (right) invariant mean,

i.e. a linear operator. M : CW(S,X) −→ X such that

M(f ) ∈ cl convf (S)

for all f ∈ CW(S,X) and

M(tf ) =M(f ) resp. M(ft) =M(f )

for all f ∈ CW(S,X) and t ∈ S.
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Theorem. Let X stand for a real locally convex linear

topological space and let (S,+) be a semigroup admitting

a left invariant mean on the space B(S,R). Let further

F : S −→ 2X \ {∅} have the property that its values

F (s) are convex and weakly compact for every s ∈ S .

Then F admits an additive selection if and only if there

exists a function f : S −→ X such that

f (s + t)− f (t) ∈ F (s) for all s, t ∈ S .
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Corollary. Let (X, ‖·‖) be a real reflexive Banach space

and let (S,+) be a semigroup admitting a left invariant

mean on the space B(S,R). Let further

ρ : S −→ [0,∞) and g : S −→ X be given functions. Then a

functional inequality

‖f (s + t)− f (t)− g(s)‖ ≤ ρ(s) , s, t ∈ S

admits a solution f : S −→ X and only if there exists an

additive mapping A : S −→ X, such that

‖g(s)− A(s)‖ ≤ ρ(s) , s ∈ S.

18



Theorem. Let (X, ‖ · ‖) be a real reflexive Banach space

and let (G,+) be an amenable group. Given a number

ε ∈ [0, 1) and a function f : G −→ X satisfying a functional

inequality

‖f (s + t)− f (s)− f (t)‖ ≤ ε‖f (s + t)‖ , s, t ∈ G,

there exist an additive map A : G −→ X and an odd map

ϕ : A(G) −→ X such that

f = ϕ ◦ A

and

‖ϕ(u)− ϕ(v)− (u− v)‖ ≤ 2ε

1− ε
‖u− v‖ , u, v ∈ A(G).

Conversely, for each additive map A : G −→ X and each

odd map ϕ : A(G) −→ X satisfying the inequality

‖ϕ(u)− ϕ(v)− (u− v)‖ ≤ δ‖u− v‖ , u, v ∈ A(G)

with some δ ∈ [0, 1), the function f := ϕ◦A yields a solution

to the functional inequality

‖f (s + t)− f (s)− f (t)‖ ≤ 2δ

1− δ
‖f (s + t)‖ , s, t ∈ G.
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Theorem. Let (X, ‖ · ‖) be a real reflexive Banach space

and let (G,+) be an amenable group. Given a number

ε ∈ [0, 1
2) and a function f : G −→ X satisfying a functional

inequality

‖f (s + t)− f (s)− f (t)‖ ≤ ε‖f (s) + f (t)‖ , s, t ∈ G,

there exist an additive map A : G −→ X and an odd map

ϕ : A(G) −→ X such that

f = ϕ ◦ A

and

‖ϕ(u)− ϕ(v)− (u− v)‖ ≤ 2ε

1− 2ε
‖u− v‖ , u, v ∈ A(G).

Conversely, for each additive map A : G −→ X and each

odd map ϕ : A(G) −→ X satisfying the inequality

‖ϕ(u)− ϕ(v)− (u− v)‖ ≤ δ‖u− v‖ , u, v ∈ A(G)

with some δ ∈ [0, 1), the function f := ϕ◦A yields a solution

to the functional inequality

‖f (s + t)− f (s)− f (t)‖ ≤ 2δ

1− δ
‖f (s) + f (t)‖ , s, t ∈ G.
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Let L1(R) denote the algebra of all complex Lebesgue

integrable functions on R ( `1-almost everywhere equal

functions being identified) with convolution multiplica-

tion

(x ∗ y)(t) :=

∫
R
x(t− s)y(s) d `1(s), x, y ∈ L1(R) ,

and with integral norm

‖x‖ :=

∫
R
|x(t)| d `1(t), x, y ∈ L1(R) .

Looking for an analytic form of linear multiplicative

functionals on L1(R), we are faced to the problem of find-

ing solutions of the Cauchy type functional equation

F (x ∗ y) = F (x)F (y), x, y ∈ L1(R),

in the class of functionals F ∈ L1(R)∗. Since the dual space

L1(R)∗ is isometrically isomorphic with the space L∞(R),

there exists exactly one function f ∈ L∞(R) such that

F (x) =

∫
R
x(t)f (t) d `1(t), x ∈ L1(R) .

Fubini’s theorem jointly with Stone-Weierstrass approxi-

mation theorem allow to obtain the following relationship∫
R2
ϕ(s, t) [f (s + t)− f (s)f (t)] d `2(s, t),

that is valid for all functions ϕ from the algebra L1(R2) .

This forces f to satisfy the exponential Cauchy functional

equation

f (s + t) = f (s)f (t)

for `2-almost all pairs (s, t) ∈ R2.
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Now, applying (some modification) of N. G. de Bruijn’s

result (1966), we infer that there exists exactly one func-

tion g : R −→ C such that

g(s + t) = g(s)g(t) for all pairs (s, t) ∈ R2

and

f (t) = g(t) for `1 − almost all t ∈ R .

Consequently, one has

F (x) =

∫
R
x(t)eiptd `1(t) , x ∈ L1(R)

for some p ∈ R.

Therefore any linear multiplicative functional F on the

convolution algebra L1(R) is nothing else but the Fourier

transform.
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Theorem (L. Molnar & M. Györy, 1998). Given a

Hausdorff topological space S with first axiom of count-

ability let C(S,C) denote the Banach algebra of all con-

tinuous complex functions on S, with the uniform con-

vergence norm. Assume that Φ : C(S,C) −→ C(S,C) is a

linear bijection preserving the diameters of ranges of the

members of the algebra C(S,C), i.e.

diam Φ(f )(S) = diam f (S), f ∈ C(S,C).

Then there exists a number α ∈ C\{0}, a homeomorphism

ϕ : S −→ S and a linear functional x : C(S,C) −→ C such

that

Φ(f ) = α · f ◦ ϕ + x(f ) · χS
for all f ∈ C(S,C).

Theorem (L. Molnar, 2002). Each bijective solution Φ

of the functional equation

Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A)

on a standard algebra of operators over the linear space

of dimension at least 2 is automatically additive, i.e. Φ

yields a Jordan isomorphism.
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Theorem (K. Baron, 2005). Given a complex Hilbert

space (X, (·|·)) let T : X −→ X be a positive self-adjoint

operator. Then T is embeddable in a semigroup of oper-

ators, i.e. there exists a map F : X × (0,∞) −→ X such

that

F (x, t + s) = F (F (x, s), t)

for all x ∈ X, s, t ∈ (0,∞) and

F (·, 1) = T .
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Hahn-Banach type theorems

Theorem (“algebraic” version of the classical Hahn-Banach

theorem). Let X0 be a linear subspace of a real linear

space X and let p : X −→ R be a sublinear (=subadditive

and positive homogeneous) functional. Then for every

linear functional f0 : X0 −→ R dominated by p, i.e.

f0(x) ≤ p(x) for all x ∈ X0 ,

there exists a linear functional f : X0 −→ R such that

f (x) = f0(x) for x ∈ X0

and

f (x) ≤ p(x) for all x ∈ X .
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Abstract version: (Rodé’s theorem)

Definition. Let X be a nonempty set and let n,m be

positive integers. We say that the maps σ : Xm −→ X and

τ : Xn −→ X commute if and only if

σ (τ (x1,1, ..., x1,n), ..., τ (xm,1, ..., xm,n))

= τ (σ(x1,1, ..., xm,1), ..., σ(x1,n, ..., xm,n))

for all elements xi,j, i = 1, ...,m, j = 1, ..., n , from the set X.
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Theorem (G. Rodé , 1978). Let X be a nonempty

set and let Γ stand for a family of pairwise commut-

ing mappings. Let further f, g : X −→ [−∞,∞) be two

functions such that g ≤ f . Then there exists a function

ϕ : X −→ [−∞,∞) between g and f with the following

property: if for some σ : Xn −→ X from the family Γ and

for some nonnegative scalars α1, ..., αn the inequalities

f (σ(x1, ..., xn)) ≤
n∑
k=1

αkf (xk) ,

and

g(σ(x1, ..., xn)) ≥
n∑
k=1

αkg(xk) ,

are valid for all x1, ..., xn from X, then

ϕ(σ(x1, ..., xn)) =

n∑
k=1

αkϕ(xk)

for all x1, ..., xn ∈ X.
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Definition. We say that a group (G,+) belongs to the

class G if and only if for each subadditive functional p :

G −→ R there exists an additive functional G −→ R such

that a ≤ p.

Theorem (R. Badora, 2006). Let (G,+) be a group.

Then (G,+) ∈ G if and only if for each subgroup (G0,+)

of the group (G,+) and for every subadditive functional

p : G −→ R such that

M(x) := sup{p(−a + x + a)− p(x) : a ∈ G0} ∈ R

and

lim inf
n→∞

1

n
M(nx) = 0 ,

for all x ∈ G, every additive functional a0 : G0 −→ R such

that a0 ≤ p|G0, admits an extension to an additive func-

tional a : G −→ R such that a ≤ p.
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Corollary. Let a group (G,+) be a member of the class

G and let p : G −→ R be a subadditive functional such that

p(2x) = 2p(x), x ∈ G .

Then for each subgroup (G0,+) of the group (G,+) and for

every additive functional a0 : G0 −→ R such that a0 ≤ p|G0,

there exists its additive extension a : G −→ R such that

a ≤ p.
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Abel ⊂ Amen ⊂ G ⊂ Hyers⋃
weakly commutative
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Theorem. Let a group (G,+) be a member of the class G
and let (Y, ‖·‖Y ) be a real normed linear space. Let further

f : X −→ Y be a solution to the functional equation

(FM) ‖f (x + y)‖Y = ‖f (x) + f (y)‖Y , x, y ∈ X .

Then there exist: a nonempty set T ⊂ RX, an addi-

tive operator A : X −→ B(T,R) and an odd isometry

I : A(X) −→ Y such that

f (x) = I(A(x)) , x ∈ X .

Conversely, for every real normed linear space (Z, ‖ ·‖Z),

for each additive operator A : X −→ Z and for any odd

isometry I : A(X) −→ Y the superposition f := I ◦A yields

a solution to equation (FM).
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Theorem. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed

linear spaces. Let further f : X −→ Y be a solution to

the functional equation (FM), such that the functional

p : X −→ R given by the formula

p(x) := ‖f (x)‖Y , x ∈ X ,

satisfies any regularity condition forcing the continuity of

Jensen convex functionals. Then there exist: a nonempty

set T ⊂ RX, a continuous linear operator L : X −→ B(T,R)

and an odd isometry I : L(X) −→ Y such that

f (x) = I(L(x)) , x ∈ X .

Conversely, for every real normed linear space (Z, ‖ ·‖Z),

for each continuous linear operator L : X −→ Z and for

any odd isometry I : L(X) −→ Y the superposition

f := I ◦ L yields a solution to equation (FM) with a con-

tinuous functional p.

Theorem. Any solution of the functional equation (FM)

mapping a group from the class G into a strictly convex

real normed linear space, is automatically additive.
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