Minimal projections onto hyperplanes in vector-valued sequence spaces

Beata Deregowska, Barbara Lewandowska

8 lipca 2015

Beata Deregowska, Barbara Lewandowska Minimal projections onto hyperplanes in vector-valued sequence spaces

A = > 4

Definition

Let *X* be a Banach space and *V* be a linear, closed subspace of *X*. Then by $\mathcal{P}(X, V)$ we denote the set of all linear projections continuous with respect to the operator norm. An operator $P : X \to V$ is called a projection, if $P|_V = id_V$. A projection $P_0 \in \mathcal{P}(X, V)$ is called minimal if

$$||P_0|| = \lambda(V, X) := \inf\{||P|| : P \in \mathcal{P}(X, V)\}.$$

For all $x \in X$

$$\|x - Px\| \le \|Id - P\| \cdot \operatorname{dist}(x, V) \le (1 + \|P\|) \cdot \operatorname{dist}(x, V),$$

where $dist(x, V) := inf\{||x - v|| : v \in V\}.$

Definition

Let $\{(X_n, \|\cdot\|^{(n)})\}_{n\in\mathbb{N}}$ be a sequence of Banach spaces. We define $c_0(\{X_n\}_{n\in\mathbb{N}}) := \{\{x_n\}_{n\in\mathbb{N}} : x_n \in X_n \text{ and } \lim_{n\to\infty} \|x_n\|^{(n)} = 0\};$ $l_1(\{X_n\}_{n\in\mathbb{N}}) := \{\{x_n\}_{n\in\mathbb{N}} : x_n \in X_n \text{ and } \sum_{n=1}^{\infty} \|x_n\|^{(n)} < \infty\}.$

These sequence spaces are Banach spaces when equipped with the following norms:

$$\|x\| = \sup_{n \in \mathbb{N}} \|x_n\|^{(n)} \text{ for } x \in c_0(\{X_n\}_{n \in \mathbb{N}});$$
$$\|x\| = \sum_{n=1}^{\infty} \|x_n\|^{(n)} \text{ for } x \in l_1(\{X_n\}_{n \in \mathbb{N}}).$$

く 同 ト く ヨ ト く ヨ ト -

Let $\{(X_n, \|\cdot\|^{(n)})\}_{n\in\mathbb{N}}$ be a sequence of Banach spaces. We have

(i) $c_0(\{X_n\}_{n\in\mathbb{N}})^* = l_1(\{X_n^*\}_{n\in\mathbb{N}})$ in the sense that for every $f \in c_0(\{X_n\}_{n\in\mathbb{N}})^*$ there is a unique $\{f_n\}_{n\in\mathbb{N}} \in l_1(\{X_n^*\}_{n\in\mathbb{N}})$ such that

$$f(x) = \sum_{n=1}^{\infty} f_n(x_n)$$
 for every $x \in c_0(\{X_n\}_{n \in \mathbb{N}})$

and the map $f \mapsto \{f_n\}_{n \in \mathbb{N}}$ is a linear isometry of $c_0(\{X_n\}_{n \in \mathbb{N}})^*$ onto $l_1(\{X_n^*\}_{n \in \mathbb{N}})$.

(ii) $l_1({X_n}_{n \in \mathbb{N}})^* = l_{\infty}({X_n^*}_{n \in \mathbb{N}})$ in the sense that for every $f \in l_1({X_n}_{n \in \mathbb{N}})^*$ there is a unique $\{f_n\}_{n \in \mathbb{N}} \in l_{\infty}({X_n^*}_{n \in \mathbb{N}})$ such that

$$f(x) = \sum_{n=1}^{\infty} f_n(x_n)$$
 for every $x \in I_1(\{X_n\}_{n \in \mathbb{N}})$

and the map $f \mapsto \{f_n\}_{n \in \mathbb{N}}$ is a linear isometry of $l_1(\{X_n\}_{n \in \mathbb{N}})^*$ onto $l_{\infty}(\{X_n^*\}_{n \in \mathbb{N}})$.

< 回 > < 三 > < 三 >

Lemma

Let X be a normed linear space and let f be a continuous nonzero linear functional on X. Each projection of X onto the hyperplane ker f is of the following form:

$$P_w(x) = x - f(x)w$$
 for all $x \in X$,

where $w \in X$ and f(w) = 1.

Lemma

Let $\{(X_n, \|\cdot\|^{(n)})\}_{n\in\mathbb{N}}$ be a sequence of Banach spaces and let $f \in S(h_1(\{X_n^*\}_{n\in\mathbb{N}}))$ and $V := \ker f$. If $P_w \in \mathcal{P}(c_0(\{X_n\}_{n\in\mathbb{N}}), V)$, then

$$\|P_{w}\| \geq \max_{i\in\mathbb{N}}\{|1-f_{i}(w_{i})|+(1-\|f_{i}\|^{(i)})\|w_{i}\|^{(i)}\}.$$

伺 ト イ ヨ ト イ ヨ

Let $\{X_n\}_{n\in\mathbb{N}}$, f, V be as before. If $||f||_{\infty} = \sup_{i\in\mathbb{N}} ||f_i||^{(i)} < \frac{1}{2}$, then

$$\lambda(V, c_0(\{X_n\}_{n\in\mathbb{N}})) \ge 1 + \left(\sum_{i=1}^{\infty} \frac{\|f_i\|^{(i)}}{1-2\|f_i\|^{(i)}}\right)^{-1}$$
(1)

It is worth mentioning that in the classical case of the space c_0 we have equality in (1) (see [1]). The next theorem shows that in general case the equality does not hold.

Theorem

Let X = C([0, 1]) and $V = \ker f$, where $f \in S(X^*)$. Then $\lambda(V, c_0(X)) = 2$.

[1]. J. Blatter, E.W. Cheney, *Minimal projections onto hyperplanes in sequence spaces,* Ann. Mat. Pura Appl Vol. 101 (1974), 215-227.

Let $\{(X_n, \|\cdot\|^{(n)})\}_{n\in\mathbb{N}}$ be a sequence of Banach spaces and let $f \in S(h_1(\{X_n^*\}_{n\in\mathbb{N}}))$ and $V := \ker f$. If $\|f\|_{\infty} \ge \frac{1}{2}$, then there is a projection of norm one in $\mathcal{P}(c_0(\{X_n\}_{n\in\mathbb{N}}), V)$ iff there exists $w_i \in X_i$ such that

Corollary

Let $(X_n, \|\cdot\|^{(n)})$ be a strictly convex Banach space and let dim $X_n > 1$ for any $n \in \mathbb{N}$. Let $f \in h_1(\{X_n^*\}_{n \in \mathbb{N}})$. Then there exists a projection of norm 1 in $\mathcal{P}(c_0(\{X_n\}_{n \in \mathbb{N}}), \text{ker } f)$ iff there is exactly one $i \in \mathbb{N}$ such that $f_i \neq 0$ and for this *i* there exists $\widetilde{P}_{w_i} \in \mathcal{P}(X_i, \text{ker } f_i)$ such that $\|\widetilde{P}_{w_i}\| = 1$.

A (1) > A (2) > A (2) > A

Let $X = l_1^n$ for $2 < n \le \infty$. Let $f \in S(l_1(l_{\infty}^n))$ and $V = \ker f$. Then there is a projection of norm one in $\mathcal{P}(c_0(X), V)$ iff I. there is exactly one $i \in \mathbb{N}$ such that $f_i \neq 0$; II. f_i has at most two nonzero coordinates.

Theorem

Let $X = l_1^2$, $f \in S(l_1(l_{\infty}^2))$ and $V = \ker f$. Then there is a projection of norm one in $\mathcal{P}(c_0(X), V)$ iff there exists $i \in \mathbb{N}$ such that $||f_i||_1 \ge 1$.

A > + = + + =

Lemma

Let X_n be a sequence of Banach spaces and let $f \in I_{\infty}({X_n^*}_{n \in \mathbb{N}})$ and $V := \ker f$. Let $P_w \in \mathcal{P}(I_1({X_n}_{n \in \mathbb{N}}), V)$, then

$$\|P_{w}\| \geq \max_{i\in\mathbb{N}} \{|1 - \|f_{i}\|^{(i)} \|w_{i}\|^{(i)}| + (\|w\| - \|w_{i}\|^{(i)} \|f_{i}\|^{(i)}\}.$$

Theorem

Let $\{X_n\}_{n\in\mathbb{N}}, f, V$ be the same as before. Then

$$\lambda(I_1(\{X_n\}_{n\in\mathbb{N}}), V) \ge \lambda(I_1, \widetilde{V}),$$
(2)

where $\widetilde{V} = \ker(\|f_1\|^{(1)}, \|f_2\|^{(2)}, \dots).$

Theorem

Let $X := \mathcal{C}([0,1]), f \in S(I_{\infty}(X^*))$ and $V = \ker f$. Then $\lambda(V, I_1(X)) = 2$.

< ロ > < 同 > < 三 > < 三 > -

Let X_n be a sequence of Banach spaces and let $f \in I_{\infty}(\{X_n^*\}_{n \in \mathbb{N}})$ and $V := \ker f$. If there exists a projection $P \in \mathcal{P}(I_1(\{X_n\}_{n \in \mathbb{N}}), V)$ of norm 1 then at most two coordinates of f are different from zero.

Example

Let
$$X := l_{\infty}^2$$
 and $f \in l_{\infty}(l_1^2)$ such that $f_1 = f_2 = (1, 0)$ and $f_j = 0$ for $j \in \{3, 4, ...\}$. Then $\lambda(\ker f, l_1(l_{\infty}^2)) > 1$.

For more details, see: B. Deregowska, B. Lewandowska, *Minimal projections onto hyperplanes in vector-valued sequence spaces,* J. Approximation Theory Vol. 194 (2015), 1-13.

- 同 ト - 三 ト - 三

Thank you for your attention