Some Classes of Operators on Separable Banach Spaces

Richard Becker

Institut de Mathématiques de Jussieu & Université Pierre-et-Marie Curie (Paris-06)

> Function Spaces XI Zielona Gora July 6-10, 2015

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The origin of my talk is the following natural question: Given two Banach spaces B and E, is it possible to describe all the operators from B to E that can be extended to every Banach space containing B. In this talk we shall deal with the case where B is contained in the Banach space C([0, 1]), denoted by C for short.

B will be always assumed to be separable. It is a well known fact that there exists a linear map $\phi : B \to C$ such that, for every $x \in B$: $\|\phi(x)\| = \|x\|$.

イロト イポト イヨト イヨト

We shall place ourselves within the framework of the following definition.

Definition

Let $1 \leq C < \infty$. We denote by $\mathcal{F}(B, E, C)$ the set of all operators $T: B \to E$ such that there exists a linear map $\phi: B \to C$, with $||x|| \leq ||\phi(x)|| \leq C ||x||$, for every $x \in B$, and there exists $T_{\phi}: C \to E$ satisfying $T = T_{\phi} \circ \phi$ on B. If $T \in \mathcal{F}(B, E, C)$ we set $||T||_C = \inf\{||T_{\phi}||\}$, where the inf is taken over all ϕ and all T_{ϕ} as above. We denote by $\mathcal{F}(B, E, \infty)$ the union of all the spaces $\mathcal{F}(B, E, C)$.

Theorem

1) $\mathcal{F}(B, E, C)$ is a normed space when it is equipped with $||T||_C$. 2) For each $T \in \mathcal{F}(B, E, C)$ then $||T|| \leq C ||T||_C$. 3) For $1 \leq C_1 \leq C_2 < \infty$ then $\mathcal{F}(B, E, C_1) \subset \mathcal{F}(B, E, C_2)$ and, if $T \in \mathcal{F}(B, E, C_1)$, then $C_2 ||T||_{C_2} \leq C_1 ||T||_{C_1}$. 4) $\mathcal{F}(B, E, \infty)$ is a normed space when it is equipped with $||T||_{\infty} = \lim C ||T||_C$ as $C \to \infty$, and $||T|| \leq ||T||_{\infty}$. The Banach spaces associated are denoted by $\overline{\mathcal{F}}(B, E, C)$ for $1 \leq C \leq \infty$ and we keep the notation $||||_C$.

イロト 不得下 イヨト イヨト 二日

Some cases are immediate:

1) When B can be embedded in C as a complemented subspace of C. This is the case when B is a space C(K), where K is an infinite compact metric space, by Milutin's Theorem and Milutin's Lemma.

In this cases, for every Banach space E, every $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$ for any C.

2) When E is an L^{∞} space, associated with a σ -finite measure, or when E is the space c_0 .

In this cases (by a Theorem of Zippin for c_0), for every Banach space B, every $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$ for any C.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

1) Every element of $\overline{\mathcal{F}}(B, E, C)$ can be viewed as a continuous operator from B to E, for $1 \le C \le \infty$. 2) If $T \in \mathcal{F}(B, E, C)$ and $V \in \mathcal{L}(E)$ then $V \circ T \in \mathcal{F}(B, E, C)$ and $\|V \circ T\|_C \le \|V\| \|T\|_C$. 3) If E = B the space $\overline{\mathcal{F}}(B, B, C)$ is an algebra, for every $1 \le C \le \infty$. When $1 \le C < \infty$ the map $T \to C \|T\|_C$ satisfies: $C \|T_1 \circ T_2\|_C \le (C \|T_1\|_C)(C \|T_2\|_C)$

for $T_1, T_2 \in \overline{\mathcal{F}}(B, B, C)$. Moreover $||T_1 \circ T_2||_{\infty} \leq ||T_1||_{\infty} ||T_2||_{\infty}$ for $T_1, T_2 \in \overline{\mathcal{F}}(B, B, \infty)$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

The following Proposition gives some informations concerning the role of the constant C in the definition of $\mathcal{F}(B, E, C)$.

Proposition

Let $1 \leq C \leq \infty$. If $U \in \mathcal{L}(B)$ satisfies $m ||x|| \leq ||U(x)|| \leq M ||x||$ for every $x \in B$, with $0 < m \leq M < \infty$, then, for every $T \in \mathcal{F}(B, E, C)$: $T \circ U \in \mathcal{F}(B, E, CM/m)$ and $||T \circ U||_{CM/m} \leq m ||T||_{C}$. Moreover $m ||T||_{\infty} \leq ||T \circ U||_{\infty} \leq M ||T||_{\infty}$.

This result shows that the space $\mathcal{F}(B, E, \infty)$ does not change if B is replaced by one of its isomorphic copy.

イロト 不得下 イヨト イヨト

The following Proposition gives some informations concerning the role of the constant C in the definition of $\mathcal{F}(B, E, C)$.

Proposition

Let $1 \leq C \leq \infty$. If $U \in \mathcal{L}(B)$ satisfies $m||x|| \leq ||U(x)|| \leq M||x||$ for every $x \in B$, with $0 < m \leq M < \infty$, then, for every $T \in \mathcal{F}(B, E, C)$: $T \circ U \in \mathcal{F}(B, E, CM/m)$ and $||T \circ U||_{CM/m} \leq m||T||_{C}$. Moreover $m||T||_{\infty} \leq ||T \circ U||_{\infty} \leq M||T||_{\infty}$.

This result shows that the space $\mathcal{F}(B, E, \infty)$ does not change if B is replaced by one of its isomorphic copy.

イロト イポト イヨト イヨト

If E does not contain a copy of c_0 then every element of $\overline{\mathcal{F}}(B, E, C)$ is weakly compact for $1 \leq C \leq \infty$.

Proposition

If E does not contain a copy of C then, for every $T \in \mathcal{F}(B, E, C)$ and $1 \leq C \leq \infty$, the space T'(E') is separable.

Proposition

If E' is an L^1 space then every compact operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T||_1 = ||T||$.

- < A > < B > < B >

If E does not contain a copy of c_0 then every element of $\overline{\mathcal{F}}(B, E, C)$ is weakly compact for $1 \leq C \leq \infty$.

Proposition

If E does not contain a copy of C then, for every $T \in \overline{\mathcal{F}}(B, E, C)$ and $1 \leq C \leq \infty$, the space T'(E') is separable.

Proposition

If E' is an L^1 space then every compact operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T||_1 = ||T||$.

イロト イポト イヨト イヨト

If E does not contain a copy of c_0 then every element of $\overline{\mathcal{F}}(B, E, C)$ is weakly compact for $1 \leq C \leq \infty$.

Proposition

If E does not contain a copy of C then, for every $T \in \overline{\mathcal{F}}(B, E, C)$ and $1 \leq C \leq \infty$, the space T'(E') is separable.

Proposition

If E' is an L¹ space then every compact operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T||_1 = ||T||$.

If B is reflexive then all the elements of $\overline{\mathcal{F}}(B, E, C)$ are compact operators, for $1 \leq C \leq \infty$.

Proposition

Let B be a subspace of c_0 and E = C(K) where K is a compact Hausdorff space. Then every operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T|| \le ||T||_1 \le 2||T||$.

- 4 緑 ト - 4 戸 ト - 4 戸 ト

If B is reflexive then all the elements of $\overline{\mathcal{F}}(B, E, C)$ are compact operators, for $1 \leq C \leq \infty$.

Proposition

Let B be a subspace of c_0 and E = C(K) where K is a compact Hausdorff space. Then every operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T|| \le ||T||_1 \le 2||T||$.

Definition

Let X, Y be two Banach spaces, and $1 \le p < \infty$. A linear operator $T: X \to Y$ is said to be *p*-summing if, for every finite sequence $x_1 \dots x_n$ in X, one has:

$$(\sum_{1}^{n} ||T(x_{i})||^{p})^{1/p} \leq c. \sup\{(\sum_{1}^{n} |\langle x', x_{i} \rangle|^{p})^{1/p} : x' \in X', ||x'|| = 1\}$$

where c is some constant.

The smallest possible constant is denoted by $\pi_p(T)$. We denote by $\pi_p(X, Y)$ the space of all this operators.

Proposition

Let $T \in \pi_2(B, E)$. Then, for every $1 \le C \le \infty$, $T \in \mathcal{F}(B, E, C)$, and $\|T\|_{\infty} \le \pi_2(T)$, and $C\|T\|_C \le \pi_2(T)$ for $1 \le C < \infty$.

Definition

Let X, Y be two Banach spaces, and $1 \le p < \infty$. A linear operator $T: X \to Y$ is said to be *p*-summing if, for every finite sequence $x_1 \dots x_n$ in X, one has:

$$(\sum_{1}^{n} ||T(x_{i})||^{p})^{1/p} \leq c. \sup\{(\sum_{1}^{n} |\langle x', x_{i} \rangle|^{p})^{1/p} : x' \in X', ||x'|| = 1\}$$

where c is some constant.

The smallest possible constant is denoted by $\pi_p(T)$. We denote by $\pi_p(X, Y)$ the space of all this operators.

Proposition

Let $T \in \pi_2(B, E)$. Then, for every $1 \le C \le \infty$, $T \in \mathcal{F}(B, E, C)$, and $\|T\|_{\infty} \le \pi_2(T)$, and $C\|T\|_C \le \pi_2(T)$ for $1 \le C < \infty$.

イロト 不得下 イヨト イヨト

Definition

Let X be a Banach space and $2 \le q < \infty$. X is said to be of *cotype-q* if, for every finite sequence $x_1 \dots x_n$, we have:

$$(\sum_{1}^{n} \|x_{i}\|^{q})^{1/q} \leq c.(\int \|\sum_{1}^{n} r_{i}(u)x_{i}\|^{q} du)^{1/q}$$

where c is some constant and (r_i) is the sequence of Rademacher variables. Let $C_q(X)$ denote the best constant c.

通 ト イヨ ト イヨト

If E has cotype 2 then, for every $1 \le C \le \infty$, the space $\overline{\mathcal{F}}(B, E, C)$ is nothing but the space of all 2-summing operators $T : B \to E$, and $C \|T\|_C \le \pi_2(T) \le AC \|T\|_C$, where A is some constant, for $1 \le C \le \infty$, and $\|T\|_{\infty} \le \pi_2(T) \le A \|T\|_{\infty}$.

Proposition

If E is of finite cotype q then every $T \in \overline{\mathcal{F}}(B, E, C)$ is r-summing for every r > q and for $1 \le C \le \infty$. Then $\pi_r(T) \le A_r C ||T||_C$, where A_r is some constant, for $1 \le C \le \infty$ and $\pi_r(T) \le A_r ||T||_\infty$. In particular, every $T \in \overline{\mathcal{F}}(B, E, C)$ is weakly compact for every $1 \le C \le \infty$.

A Banach space E, with no cotype, can be such that $c_0 \not\subset E$.

If E has cotype 2 then, for every $1 \le C \le \infty$, the space $\overline{\mathcal{F}}(B, E, C)$ is nothing but the space of all 2-summing operators $T : B \to E$, and $C \|T\|_C \le \pi_2(T) \le AC \|T\|_C$, where A is some constant, for $1 \le C \le \infty$, and $\|T\|_{\infty} \le \pi_2(T) \le A \|T\|_{\infty}$.

Proposition

If E is of finite cotype q then every $T \in \overline{\mathcal{F}}(B, E, C)$ is r-summing for every r > q and for $1 \le C \le \infty$. Then $\pi_r(T) \le A_r C ||T||_C$, where A_r is some constant, for $1 \le C \le \infty$ and $\pi_r(T) \le A_r ||T||_{\infty}$. In particular, every $T \in \overline{\mathcal{F}}(B, E, C)$ is weakly compact for every $1 \le C \le \infty$.

A Banach space *E*, with no cotype, can be such that $c_0 \not\subset E$.

イロト 不得下 イヨト イヨト 二日

If E has cotype 2 then, for every $1 \le C \le \infty$, the space $\overline{\mathcal{F}}(B, E, C)$ is nothing but the space of all 2-summing operators $T : B \to E$, and $C \|T\|_C \le \pi_2(T) \le AC \|T\|_C$, where A is some constant, for $1 \le C \le \infty$, and $\|T\|_{\infty} \le \pi_2(T) \le A \|T\|_{\infty}$.

Proposition

If E is of finite cotype q then every $T \in \overline{\mathcal{F}}(B, E, C)$ is r-summing for every r > q and for $1 \le C \le \infty$. Then $\pi_r(T) \le A_r C ||T||_C$, where A_r is some constant, for $1 \le C \le \infty$ and $\pi_r(T) \le A_r ||T||_{\infty}$. In particular, every $T \in \overline{\mathcal{F}}(B, E, C)$ is weakly compact for every $1 \le C \le \infty$.

A Banach space *E*, with no cotype, can be such that $c_0 \not\subset E$.

イロト イポト イヨト イヨト

Here is a stronger version of our Definition.

Definition

Let $1 \leq C < \infty$. We denote by $\mathcal{G}(B, E, C)$ the set of all operators $T : B \to E$ such that, for every linear map $\phi : B \to C$ with $||x|| \leq \phi(x) \leq C ||x||$, for every $x \in B$, there exists $T_{\phi} : C \to E$ with $T = T_{\phi} \circ \phi$ on B and such that $\sup\{||T_{\phi}||\} < \infty$, where the sup is taken on all such ϕ . We denote by $|||T|||_C$ the smallest number K such that $||T_{\phi}|| \leq K$ for all such ϕ .

(There exits a linear map $\phi \ldots$) is replaced by (For every linear map $\phi \ldots$)

イロト イポト イヨト イヨト

Here is a stronger version of our Definition.

Definition

Let $1 \leq C < \infty$. We denote by $\mathcal{G}(B, E, C)$ the set of all operators $T : B \to E$ such that, for every linear map $\phi : B \to C$ with $||x|| \leq \phi(x) \leq C ||x||$, for every $x \in B$, there exists $T_{\phi} : C \to E$ with $T = T_{\phi} \circ \phi$ on B and such that $\sup\{||T_{\phi}||\} < \infty$, where the sup is taken on all such ϕ . We denote by $|||T|||_C$ the smallest number K such that $||T_{\phi}|| \leq K$ for all such ϕ .

(There exits a linear map $\phi \dots$) is replaced by (For every linear map $\phi \dots$)

イロン イ団と イヨン ト

1) If $C_1 \leq C_2$ then $\mathcal{G}(B, E, C_2) \subset \mathcal{G}(B, E, C_1)$ (the order is reverse). 2) $\mathcal{G}(B, E, 1) \subset \mathcal{F}(B, E, 1)$.

3) These spaces contains the space of 2-summing operators.

4) When *E* is of cotype 2 these spaces are identical to the space of 2-summing operators from *B* to *E*.

5) When E is the space c_0 these spaces are identical to the space of all operators from B to E.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1) If $C_1 \leq C_2$ then $\mathcal{G}(B, E, C_2) \subset \mathcal{G}(B, E, C_1)$ (the order is reverse). 2) $\mathcal{G}(B, E, 1) \subset \mathcal{F}(B, E, 1)$.

3) These spaces contains the space of 2-summing operators.

4) When *E* is of cotype 2 these spaces are identical to the space of 2-summing operators from *B* to *E*.

5) When E is the space c_0 these spaces are identical to the space of all operators from B to E.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1) If $C_1 \leq C_2$ then $\mathcal{G}(B, E, C_2) \subset \mathcal{G}(B, E, C_1)$ (the order is reverse). 2) $\mathcal{G}(B, E, 1) \subset \mathcal{F}(B, E, 1)$.

3) These spaces contains the space of 2-summing operators.

4) When *E* is of cotype 2 these spaces are identical to the space of 2-summing operators from *B* to *E*.

5) When E is the space c_0 these spaces are identical to the space of all operators from B to E.

- 1) If $C_1 \leq C_2$ then $\mathcal{G}(B, E, C_2) \subset \mathcal{G}(B, E, C_1)$ (the order is reverse). 2) $\mathcal{G}(B, E, 1) \subset \mathcal{F}(B, E, 1)$.
- 3) These spaces contains the space of 2-summing operators.
- 4) When E is of cotype 2 these spaces are identical to the space of 2-summing operators from B to E.
- 5) When E is the space c_0 these spaces are identical to the space of all operators from B to E.

- 1) If $C_1 \leq C_2$ then $\mathcal{G}(B, E, C_2) \subset \mathcal{G}(B, E, C_1)$ (the order is reverse). 2) $\mathcal{G}(B, E, 1) \subset \mathcal{F}(B, E, 1)$.
- 3) These spaces contains the space of 2-summing operators.
- 4) When E is of cotype 2 these spaces are identical to the space of 2-summing operators from B to E.
- 5) When E is the space c_0 these spaces are identical to the space of all operators from B to E.

We recall a preceding Proposition

Proposition

Let B be a subspace of c_0 and E = C(K) where K is a compact Hausdorff space. Then every operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T|| \le ||T||_1 \le 2||T||$.

The Problem is the following: Does this proposition holds true when ${\cal F}$ is replace by ${\cal G}$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We recall a preceding Proposition

Proposition

Let B be a subspace of c_0 and E = C(K) where K is a compact Hausdorff space. Then every operator $T : B \to E$ belongs to $\mathcal{F}(B, E, C)$, for every C, and $||T|| \le ||T||_1 \le 2||T||$.

The Problem is the following: Does this proposition holds true when ${\cal F}$ is replace by ${\cal G}$?

- 4 目 ト - 4 日 ト - 4 日 ト