Function Spaces XI

Paley spaces

Sergey Astashkin (Samara State University)

Joint work with E. Semenov (Voronezh State University)

Sergey Astashkin ()

r.Zielona Góra — 2015

09.07.2015 1 / 27

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - ヨ

Haar functions

Let \mathbb{D} be the family of dyadic intervals $\Delta_n^k = ((k-1)2^{-n}, k2^{-n}), k = 1, \dots, 2^n, n = 0, 1, \dots$ The functions $h_0^0(t) = 1$,

$$h_n^k(t) = h_{\Delta_n^k}(t) = \begin{cases} 1, t \in \Delta_{n+1}^{2k-1} \\ -1, t \in \Delta_{n+1}^{2k} \\ 0 \text{ for the remaining } t \in [0, 1] \end{cases}$$

form the *Haar system*.

Let $\Omega := \{(0,0), (n,k), k = 1, ..., 2^n, n = 0, 1, ...\}$. The sequence $\{2^{n/2}h_n^k\}_{(n,k)\in\Omega}$ is a complete orthonormal system and a monotone basis in $L_p[0,1]$ for every $1 \le p < \infty$ (J. Schauder, 1928).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Paley–Marcinkiewicz theorem

Definition.

A basis $\{e_k\}_{k=1}^{\infty}$ of a Banach space E is called *unconditional* if its basis property is preserving under any permutation of its elements or, equivalently, if there is a constant C > 0 such that for all $\varepsilon_m = \pm 1$ and $c_m \in \mathbb{R}$

$$\left\|\sum_{m=1}^{\infty}\varepsilon_m c_m e_m\right\|_E \leq C \left\|\sum_{m=1}^{\infty}c_m e_m\right\|_E.$$

Theorem(J. Marcinkiewicz, 1937, R.E. Paley, 1932)

For every $1 the Haar system is an unconditional basis in <math>L_p[0, 1]$.

At the same time, Haar functions form a conditional basis in $L_1[0, 1]$:

$$\left\|h_{0}^{1}+\sum_{n=1}^{N}2^{n-1}h_{n}^{1}\right\|_{L_{1}}=1, \ N\in\mathbb{N}, \ \text{but}\lim_{N\to\infty}\left\|h_{0}^{1}+\sum_{n=1}^{N}(-1)^{n}2^{n-1}h_{n}^{1}\right\|_{L_{1}}=\infty.$$
Sergey Astashkin ()

Let the Fourier-Haar coefficients $c_n^k = c_n^k(x)$ of a function $x \in L_1[0, 1]$ be defined by

$$c_n^k = 2^n \int_0^1 x(s) h_n^k(s) ds, \quad (n,k) \in \Omega.$$

The square (or *Paley*) function

$$\mathsf{Px}(t) := \Big(\sum_{(n,k)\in\Omega} (c_n^k h_n^k(t))^2\Big)^{1/2},$$

is finite a.e. on [0, 1].

An equivalent formulation of Paley-Marcinkiewicz theorem.

For every $1 there is <math>A_p > 0$ such that

$$A_{\rho}^{-1}\int_{0}^{1}|x(t)|^{
ho}\,dt\leq\int_{0}^{1}Px(t)^{
ho}\,dt\leq A_{
ho}\int_{0}^{1}|x(t)|^{
ho}\,dt.$$

Sergey Astashkin ()

r.Zielona Góra - 2015

09.07.2015 4 / 27

Symmetric spaces

Definition.

A Banach space X of measurable functions on [0, 1] is called *symmetric* (or *rearrangement invariant*) if:

1. X is an ideal lattice, that is, if $|x(t)| \leq |y(t)|$ a.e. on [0, 1] and $y \in X$, then $x \in X$ is $||x||_X \leq ||y||_X$;

2. if $y \in X$ and

$$|\{t: |y(t)| > \tau\}| = |\{t: |x(t)| > \tau\}|$$

for all $\tau > 0$, then $x \in X$ is $||x||_X = ||y||_X$.

Sergey Astashkin ()

r.Zielona Góra - 2015

< 日 > < 同 > < 回 > < 回 > < 回 > <

- B

5 / 27

09.07.2015

Orlicz spaces

Every increasing convex function M(u), M(0) = 0, on $[0, \infty)$ generates the *Orlicz space* L_M with the norm

$$\|x\|_{L_M} = \inf \Big\{\lambda > 0: \int_0^1 M(|x(t)|/\lambda) dt \leqslant 1\Big\}.$$

If $M(u) = u^p$, then $L_M = L_p$. The Orlicz space L_M , where $M(u) = e^{u^2} - 1$ (resp. $M(u) = u \log(1 + u)$) will be denoted by exp L_2 (resp. $L \log L$).

Boyd indices

In any symmetric space X, the operator $\sigma_{\tau}x(t) = x(t/\tau)\chi_{[0,1]}(t/\tau)$, $\tau > 0$, is bounded, and $\|\sigma_{\tau}\|_{X \to X} \leq \max(1, \tau)$. The Boyd indices of X:

$$\alpha_X = \lim_{\tau \to 0} \frac{\ln \|\sigma_\tau\|_X}{\ln \tau} \text{ and } \beta_X = \lim_{\tau \to \infty} \frac{\ln \|\sigma_\tau\|_X}{\ln \tau}$$

Always, $0 \leq \alpha_X \leq \beta_X \leq 1$. For example, $\alpha_{L_p} = \beta_{L_p} = 1/p$ if $1 \leq p \leq \infty$.

Köthe duality

Denote by X' the Köthe dual space to a symmetric space X with the norm

$$\|x\|_{X'} = \sup_{\|y\|_X \leq 1} \int_0^1 x(t)y(t) dt.$$

X' is a symmetric space and $X \subset X''$ with $||f||_{X''} \le ||f||_X$, $f \in X$.

X = X'' (isometrically) iff X has the Fatou property, that is, if $0 \le f_n \nearrow f$ a.e. on [0,1] and $\sup_{n \in \mathbb{N}} ||f_n||_X < \infty$, then $f \in X$ and $||f_n||_X \nearrow ||f||_X$.

A symmetric space X separable iff $X' = X^*$.

Next, we assume that X is separable or has the Fatou property and $\|\chi_{[0,1]}\|_X = 1.$

Sergey Astashkin ()

r.Zielona Góra - 2015

Paley function and Paley spaces

The Haar functions form a monotone basis in any separable symmetric space. It is an unconditional basis in X iff $0 < \alpha_X \leq \beta_X < 1$ (E. Semenov, 1969; in the case of Orlicz spaces, V. Gaposhkin, 1967). Equivalently, the Haar system is an unconditional basis in a symmetric space X iff there is C = C(X) such that for all $x \in X$

$$C^{-1} \|x\|_X \le \|Px\|_X \le C \|x\|_X.$$
(1)

(Px is the Paley function, corresponding to the Haar system).

Given a symmetric space X, the Paley space P(X) will be defined as the space of all functions $x \in L_1[0, 1]$ such that $Px \in X$ with the norm $||x||_{P(X)} := ||Px||_X$. In the case $X = L_1$ we obtain the dyadic H^1 space, which belongs to the classes of atomic and martingale H^1 spaces (P.Müller, "Isomorphisms between H^1 spaces", 2005).

The operator P in symmetric spaces.

Consider the embeddings $P(X) \subset X$ and $X \subset P(X)$ separately.

Theorem 1

Let X be a symmetric space on [0, 1]. 1. The embedding $P(X) \subset X$ holds iff $\alpha_X > 0$. 2. The embedding $X \subset P(X)$ holds iff $0 < \alpha_X \leq \beta_X < 1$.

Corollary 1.

If $X \subset P(X)$, then X = P(X).

Corollary 2: A refined version of criterion of unconditionality of Haar basis.

The Haar system is an unconditional basis in a separable symmetric space X iff the operator P is bounded in X, i.e., there is C = C(X) such that for all $x \in X$

$$\|Px\|_X \leq C \|x\|_X.$$

The Haar system as an RUC-basis

Definition

Let X be a Banach space. A biorthogonal system (e_k, e_k^*) , $e_k \in X$, $e_k^* \in X^*$, is called an *RUC (random unconditional convergence)-system* if, for any (some) $p \in [1, \infty)$, there is $K_p > 0$ such that the inequality

$$\sup_{n=1,2,...} \left(\int_0^1 \left\| \sum_{k=1}^n r_k(s) e_k^*(x) e_k \right\|_X^p ds \right)^{1/p} \le K_p \|x\|_X$$

holds for any $x \in [e_k]$ (see P. Billard, S. Kwapieň, A. Pełczyňski, Ch. Samuel, Lonhorn Notes. Texas Func. Anal. Seminar 1985-1986).

A basis that (together with the basis coefficient functionals) forms an RUC-system, is called an *RUC-basis*. Clearly, each unconditional basis is an RUC-basis. On the other hand, trigonometric system is an RUC-basis in $L_p[0,1]$ if $p \ge 2$, but it is a conditional basis in $L_p[0,1]$ for all $p \ne 2$.

Sergey Astashkin ()

Corollary 3.

The Haar system is an RUC-basis in a separable symmetric space X iff it is unconditional (equivalently, $0 < \alpha_X \le \beta_X < 1$).

Proof

If the Haar system $\{h_k\}_{k=1}^{\infty}$ forms an RUC-basis in X, then for some K

$$\int_0^1 \left\|\sum_{k=1}^n r_k(s)c_kh_k\right\|_X ds \leq K \left\|\sum_{k=1}^n c_kh_k\right\|_X, \ n \in \mathbb{N}.$$

Moreover, by the L_1 -Khinchine inequality, $\int_0^1 \|\sum_{k=1}^n r_k(s) c_k h_k\|_X \, ds \geq$

$$\left\|\int_{0}^{1}\left|\sum_{k=1}^{n}r_{k}(s)c_{k}h_{k}\right|ds\right\|_{X}\geq\frac{1}{\sqrt{2}}\left\|\left(\sum_{k=1}^{n}(c_{k}h_{k})^{2}\right)^{1/2}\right\|_{X}$$

Consequently, since X is separable, $||Px||_X \le \sqrt{2}K ||x||_X$ for all $x \in X$, and from Theorem 1 it follows that $0 < \alpha_X \le \beta_X < 1$.

Sergey Astashkin ()

The ideal and symmetric properties of Paley spaces.

Theorem 2.

Let X be a symmetric space on [0, 1].

The following conditions are equivalent:
 (a) P(X) is symmetric;
 (b) P(X) has the ideal property;
 (c) X = L₂ isometrically.

2. The following conditions are equivalent:

(a) P(X) coincides (up to equivalence of norms) with some symmetric space;

(b) P(X) coincides (up to equivalence of norms) with some Banach function lattice;

(c) $0 < \alpha_X \leq \beta_X < 1$.

Banach properties of Paley spaces

Proposition 1.

For every symmetric space X the space P(X) is complete.

Proposition 2.

The space P(X) is separable iff so is X.

Theorem 3.

If a separable symmetric space X contains a subspace isomorphic to l_1 (resp. to c_0), then P(X) also contains a subspace isomorphic to l_1 (resp. to c_0).

The Rademacher functions in Paley spaces

$$r_n(t) := \operatorname{sign} \sin(2^n \pi t), \quad n = 1, 2, \dots$$

If $a = (a_k)_{k=1}^{\infty} \in \ell_2$, the series $\sum_{n=1}^{\infty} a_n r_n(t)$ converges a.e. on [0,1]. Let *Rad* denote the class of all such functions.

Since
$$r_{n+1}(t) = \sum_{k=1}^{2^n} h_n^k(t), n = 0, 1, 2...,$$
then
 $P(\sum_{n=1}^{\infty} a_n r_n)(t) = (\sum_{n=1}^{\infty} a_n^2)^{1/2}$. So, $Rad \subset P(X)$ and
 $\left\|\sum_{n=1}^{\infty} a_n r_n\right\|_{P(X)} = \|(a_n)\|_{\ell_2}$

for any symmetric space X.

Sergey Astashkin ()

r.Zielona Góra — 2015

09.07.2015 14 / 27

Complementability of *Rad* in Paley spaces

Definition

A closed subspace F of a Banach space E is called complemented (1-complemented) in E if there exists a bounded projection (a norm-one projection) from E onto F.

Theorem 5.

The subspace Rad is 1-complemented in P(X) for any symmetric space X.

More precisely, the orthogonal projection

$$Qf(s) := \sum_{n=1}^{\infty} \int_0^1 fr_n \, dt \cdot r_n(s)$$

is bounded on P(X) and $||Qf||_{P(X)} \leq ||f||_{P(X)}$.

Sergey Astashkin ()

r.Zielona Góra — 2015

Corollary 4.

For any symmetric space X the Paley space P(X) contains a 1-complemented subspace isometric to ℓ_2 .

Comparison with symmetric spaces.

The projection Q from Theorem 5 is bounded in a symmetric space X (equivalently, Rad is complemented in X) iff $G \subset X \subset G'$, where G is the closure of L_{∞} in the exponential Orlicz space $\exp L_2$, and G' is the Köthe dual space to G (Rodin-Semenov and independently Lindenstrauss-Tzafriri result, 1979). Moreover, the last embeddings are equivalent to the condition that a separable symmetric space X which fails to contain a complemented sublattice isomorphic to ℓ_2 contains ℓ_2 as a complemented subspace (Raynaud, 1995).

Interpolation properties of the Banach couple $(L_{\infty}, P(L_{\infty}))$.

Let (X_0, X_1) be a Banach couple, that is, Banach spaces X_0 and X_1 embedded into some Hausdorff topological linear space; let $x \in X_0 + X_1$, t > 0. The functional

 $\mathcal{K}(t, x, X_0, X_1) = \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1} : x = x_0 + x_1, x_0 \in X_0, x_1 \in X_1\}$

is called the Peetre \mathcal{K} -functional of the couple (X_0, X_1) .

Definition.

Let Y_0 and Y_1 be closed subspaces of X_0 and X_1 , respectively. A couple (Y_0, Y_1) is called a *K*-closed subcouple of the couple (X_0, X_1) if

$$\mathcal{K}(t, y, Y_0, Y_1) \leq C\mathcal{K}(t, y, X_0, X_1),$$

where C is independent of t > 0 is $y \in Y_0 + Y_1$.

Sergey Astashkin ()

r.Zielona Góra — 2015

09.07.2015 17 / 27

The operator

$$\mathit{Ra}(t)=\sum_{k=1}^{\infty}a_kr_k(t),\;\;a=(a_k)_{k=1}^{\infty}\in\ell_2,$$

is an isometry from ℓ_1 into L_{∞} and from ℓ_2 into $P(L_{\infty})$. Therefore, the couples $(R(\ell_1), R(\ell_2))$ and (ℓ_1, ℓ_2) are isometric and

$$\mathcal{K}(t, \mathsf{Ra}; \mathsf{R}(\ell_1), \mathsf{R}(\ell_2)) = \mathcal{K}(t, \mathsf{a}; \ell_1, \ell_2).$$

Theorem 6.

The Banach couple $(R(\ell_1), R(\ell_2))$ is a \mathcal{K} -closed subcouple of the couple $(L_{\infty}, P(L_{\infty}))$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Let (X_0, X_1) be a Banach couple and F be a Banach lattice on $(0, \infty)$ with measure dt/t such that min $(1, t) \in F$. The space of the \mathcal{K} -method $(X_0, X_1)_F^{\mathcal{K}}$ consists of all $x \in X_0 + X_1$ such that $\|x\| := \|\mathcal{K}(t, x, X_0, X_1)\|_F < \infty$. It is an interpolation space with respect to the Banach couple (X_0, X_1) ,

i.e., an arbitrary linear operator that is bounded on X_0 and X_1 is also bounded on $(X_0, X_1)_F^{\mathcal{K}}$. If F is a weighted space $L_p(t^{-\theta}, dt/t)$, $0 < \theta < 1, 1 \le p \le \infty$, we obtain the classical spaces $(X_0, X_1)_{\theta, p}$.

Corollary 5.

Let
$$\tilde{F} = (\ell_1, \ell_2)_F^{\mathcal{K}}$$
. If $X = (L_\infty, P(L_\infty))_F^{\mathcal{K}}$, then $\|\sum_{n=1}^\infty a_n r_n\|_X \asymp \|(a_n)\|_{\tilde{F}}$.

Given arbitrary interpolation space \tilde{F} with respect to the couple (ℓ_1, ℓ_2) , Corollary 5 makes it possible to find an interpolation space X with respect to the couple $(L_{\infty}, P(L_{\infty}))$ such that on $Rad \cap X$ the norm of X is equivalent to the norm of \tilde{F} .

Sergey Astashkin ()

An example.

Let $1 . Then <math>\ell_p = (\ell_1, \ell_2)_{\theta, p}$, where $\theta = 2(p-1)/p$. Therefore, if $X_p := (L_{\infty}, P(L_{\infty}))_{\theta, p}$, then

$$\left\|\sum_{n=1}^{\infty}a_nr_n\right\|_{X_p}\asymp\|(a_n)\|_{\ell_p}.$$

A closed result (Nikishin,1974;Rodin–Semenov,1975): if Λ_p is the Lorentz space with the norm $||x||_{\Lambda_p} := (\int_0^1 (x^*(t))^p \ln^{-p}(e/s) ds/s)^{1/p}$, then

$$\left\|\sum_{n=1}^{\infty}a_nr_n\right\|_{\Lambda_p}\asymp\|(a_n)\|_{\ell_p}.$$

Observe that $\Lambda_p = (L_{\infty}, G)_{\theta,p}$, where $\theta = 2(p-1)/p$.

Sergey Astashkin ()

r.Zielona Góra - 2015

 →
 ≥
 <</th>
 >
 >
 >
 <</th>
 <</th>

$P(L_{\infty})$ as an endpoint of the L_{p} -scale.

For all
$$p \ge 2$$

$$\frac{\sqrt{2}}{\sqrt{p}} \|Pf\|_{L_p} \le \|f\|_{L_p} \le 16\sqrt{p} \|Pf\|_{L_p}$$
(2)

with the correct asymptotic behavior of the constants as $p \to \infty$ (see Müller's book "Isomorphisms between H^1 spaces", 2005). So, $P(L_{\infty})$ appears as an endpoint of the L_p -scale for $p \to \infty$.

From (2) it follows that $L_{\infty} \subset P(\exp L_2)$. Moreover, the function

$$x(t) = \sum_{n=0}^{\infty} (h_{2n}^1(t) - h_{2n+1}^1(t)) \in L_{\infty}$$

and $P_X(t) \ge \log_2^{1/2}(1/t)$, $0 < t \le 1$.

Sergey Astashkin ()

09.07.2015 21 / 27

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem 7.

Let X be a symmetric space on [0, 1]. The following conditions are equivalent:

(i)
$$L_{\infty} \subset P(X);$$

(ii) $\sup_{E \subset [0,1]} \|\chi_E\|_{P(X)} < \infty;$
(iii) $\exp L_2 \subset X.$

Also, from (2) it follows that $P(L_{\infty}) \subset \exp L_2$.

The function $\log_2^{1/2}(2/t)$ does not belong to $P(L_{\infty})$. However, the following result shows that the exponential Orlicz space exp L_2 is the smallest symmetric space containing $P(L_{\infty})$.

Theorem 8.

For any $x \in \exp L_2$ there exists a function $f \in P(L_\infty)$ such that

$$\frac{1}{C}\|x\|_{\exp L_2} \leqslant \|f\|_{P(L_{\infty})} \leqslant C\|x\|_{\exp L_2},$$

where C > 0 is independent of x, and

$$f^*(t) \ge x^*(t), \ \ 0 < t \le 1/2.$$

In particular, there exists $f_0 \in P(L_\infty)$, $\|f_0\|_{P(L_\infty)} = 1$, such that

$$|f_0(t)| \leqslant \log_2^{1/2}(2/t), \ \ 0 < t \le 1,$$

and

$$f_0^*(t) \geqslant rac{1}{2} \log_2^{1/2}(2/t), \;\; 0 < t \le 1/2.$$

< ロ > (四 > (四 > (回 > (回 >))) 回)

Duality for Paley spaces.

From the famous Fefferman's inequality (1972) it follows that $P(L_1)^* = (H^1)^* = BMO_d$, where the dyadic BMO_d space consists of all functions $f \in L_1[0, 1]$ such that

$$\|f\|_{BMO_d} := \sup_{I \in \mathbb{D}} \frac{1}{|I|} \int_I |f(s) - f_I| ds < \infty,$$

where the supremum is taken over all $I \in \mathbb{D}$, $f_I = \frac{1}{|I|} \int_I f(s) ds$.

Let $f \in L_1[0,1]$, $f \sim \sum_{L \in \mathbb{D}} b_L h_L$. Then $\|f\|_{BMO_d} \asymp \|f^{\sharp}\|_{L_{\infty}}$, where $f^{\sharp}(x) := \sup_{I \in \mathbb{D}: x \in I} \left(\frac{1}{|I|} \sum_{L \in \mathbb{D}: L \subset I} b_L^2 |L|\right)^{1/2}$,

 $0 \leq x \leq 1.$

Let X be a symmetric space on [0, 1]. Denote by X^{\sharp} the space of all $f \in L_1[0, 1], f \sim \sum_{L \in \mathbb{D}} b_L h_L$, such that $f^{\sharp} \in X$, with the norm $\|f\|_{X^{\sharp}} := \|f^{\sharp}\|_X$.

Theorem 9.

Suppose X is a separable symmetric space such that $\alpha_X > 1/2$. Then $P(X)^* = (X')^{\sharp}$.

Problem: To find the largest symmetric space embedded into $P(L_1)$.

Theorem 10.

A symmetric space X is embedded into $P(L_1)$ iff $X \subset L \log L$.

Sergey	Astas	hkin (()

r.Zielona Góra - 2015

09.07.2015 25 / 27

When the spaces P(X) and X are isomorphic?

Conjecture.

Let X be a symmetric space on [0, 1]. If the spaces P(X) and X are isomorphic, then $0 < \alpha_X \leq \beta_X < 1$.

Let P(X) and X be isomorphic. Since P(X) contains a complemented copy of ℓ_2 , we have $G \subset X \subset G'$. Moreover, if X is a separable space, then the Haar functions form in P(X) an unconditional basis. So, $0 < \alpha_X \leq \beta_X < 1$.

Non-separable case ?

Sergey Astashkin ()

r.Zielona Góra — 2015

09.07.2015

26 / 27

Thank you for your attention!

r.Zielona Góra — 2015

09.07.2015 27 / 27