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Structure of Cesàro function spaces and interpolation

Abstract

The Cesàro function spaces Cesp(I) on both I = [0, 1] and I = [0,∞) are classes of
Lebesgue measurable real functions f on I such that the norm
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<∞, for 1 ≤ p <∞,

and

‖f‖C(∞) = sup
x∈I, x>0

1

x

∫ x

0

|f(t)| dt <∞, for p =∞.

In the case 1 < p <∞ spaces Cesp(I) are separable, strictly convex and not symmetric.
They, in the contrast to the sequence spaces, are not reflexive and do not have the fixed
point property.

The structure of the Cesàro function spaces Cesp(I) was investigated in [1]–[3] and
[6]–[7]. Their dual spaces, which equivalent norms have different description on [0, 1]
and [0,∞), are described. The spaces Cesp(I) for 1 < p < ∞ are not isomorphic to
any Lq(I) space with 1 ≤ q ≤ ∞. They have “near zero” complemented subspaces
isomorphic to lp and “in the middle” contain an asymptotically isometric copy of l1 and
also a copy of L1[0, 1]. They do not have Dunford-Pettis property. Cesàro function spaces
on [0, 1] and [0,∞) are isomorphic for 1 < p < ∞. Moreover, the Rademacher functions
span in Cesp[0, 1] for 1 ≤ p < ∞ a space which is isomorphic to l2. This subspace is
uncomplemented in Cesp[0, 1]. The span in the space Ces∞[0, 1] gives another sequence
space.

In [5] and [8] it was shown that Cesp(I) is an interpolation space between Cesp0(I)
and Cesp1(I) for 1 < p0 < p1 ≤ ∞, where 1/p = (1 − θ)/p0 + θ/p1 with 0 < θ < 1. The
same result is true for Cesàro sequence spaces. On the other hand, Cesp[0, 1] is not an
interpolation space between Ces1[0, 1] and Ces∞[0, 1].

More general spaces were considered in [10]–[12]. For a Banach ideal function space
X on I we define the abstract Cesàro space CX = CX(I), the abstract Copson space

C∗X = C∗X(I) and the abstract Tandori space X̃ = X̃(I) as

CX = {f ∈ L0(I) : C|f | ∈ X} with the norm ‖f‖CX = ‖C|f | ‖X ,

C∗X = {f ∈ L0(I) : C∗|f | ∈ X} with the norm ‖f‖C∗X = ‖C∗|f | ‖X ,
X̃ = {f ∈ L0(I) : f̃ ∈ X} with the norm ‖f‖X̃ = ‖ f̃ ‖X ,

where Cf(x) = 1
x

∫ x

0
f(t) dt, C∗f(x) =

∫
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t
dt and f̃(x) = ess supt∈I, t≥x |f(t)|.
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Comparisons of Cesàro, Copson and Tandori spaces as well as the “iterated” spaces
CCX and C∗C∗X are presented in [12]. It may happen that spaces are different but the
corresponding Cesàro, Copson and Tandori spaces are the same, that is, there are X 6= Y

such that CX = CY , C∗X = C∗Y and X̃ = Ỹ .
The duality of abstract Cesàro spaces was proved in [10]: under some mild assumptions

on X we have (CX)′ = X̃ ′ in the case I = [0,∞) and (CX)′ = X̃ ′(1/v), where v(x) =
1− x, x ∈ [0, 1) in the case I = [0, 1]

The real and complex interpolation methods of abstract Cesàro, Copson and Tandori
spaces, including the description of Calderón-Lozanovskǐı construction for those spaces
were given in [11].

The investigations show an interesting phenomenon that there is a big difference be-
tween properties and interpolation of Cesàro function spaces in the cases of finite and
infinite interval.

The talk is based on joint papers with Sergey V. Astashkin (Samara) and Karol Leśnik
(Poznań).
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Math. 215 (2013), no. 1, 39–69.

[6] S. V. Astashkin and L. Maligranda, A short proof of some recent results related to Cesàro function
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[10] K. Leśnik and L. Maligranda, Abstract Cesàro spaces. Duality. J. Math. Anal. Appl. 424 (2015), no.
2, 932–951.
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