Generalization of fractional integrals in central Morrey spaces

Katsuo Matsuoka

College of Economics, Nihon University Japan

For $0 < \alpha < n$ and $f \in L^1_{loc}(\mathbb{R}^n)$, let I_{α} be a fractional integral, i.e.,

$$I_{\alpha}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy$$

and \tilde{I}_{α} be a modified fractional integral, i.e.,

$$\tilde{I}_{\alpha} f(x) = \int_{\mathbb{R}^n} f(y) \left(\frac{1}{|x-y|^{n-\alpha}} - \frac{1-\chi_{Q_1}(y)}{|y|^{n-\alpha}} \right) dy,$$

where χ_{Q_1} is the characteristic function of Q_1 , and for $1 \leq p < \infty$ and $-n/p \leq \lambda < \infty$, let $B^{p,\lambda}(\mathbb{R}^n)$ be a (non-homogeneous) central Morrey space, i.e.,

$$B^{p,\lambda}(\mathbb{R}^n) = \{ f \in L^p_{loc}(\mathbb{R}^n) : \|f\|_{B^{p,\lambda}} < \infty \},\$$

where

$$\|f\|_{B^{p,\lambda}} = \sup_{r \ge 1} \frac{1}{r^{\lambda}} \left(\frac{1}{|Q_r|} \int_{Q_r} |f(y)|^p \, dy \right)^{1/p}$$

Then, for $0 < \alpha < n$ and $1 \le p < \infty$, the following are known:

- when $-n/p \leq \lambda < -\alpha$, I_{α} is well-defined and bounded for $B^{p,\lambda}(\mathbb{R}^n)$;
- when $-n/p \leq \lambda < 1 \alpha$, \tilde{I}_{α} is well-defined and bounded for $B^{p,\lambda}(\mathbb{R}^n)$.

In this talk, for the whole of λ such that $-n/p \leq \lambda < \infty$, we will extend the results of boundedness of I_{α} for $B^{p,\lambda}(\mathbb{R}^n)$. In order to do this, we will

- introduce the "new" function spaces;
- define the "new" modification of I_{α} which is well-defined for $B^{p,\lambda}(\mathbb{R}^n)$, when $\lambda \geq 1 \alpha$.

Note: For r > 0, $Q_r = \{y \in \mathbb{R}^n : |y| < r\}$ or $Q_r = \{y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n : \max_{1 \le i \le n} |y_i| < r\}.$