COMPLEX INTERPOLATION OF ORLICZ SPACES WITH RESPECT TO A VECTOR MEASURE

ANTONIO MANZANO UNIVERSIDAD DE BURGOS (SPAIN)

Abstract. Let X be a complex Banach space and $m: \Sigma \to X$ be a countably additive vector measure, where Σ is a σ -algebra of subsets of some nonempty set Ω . The Orlicz space $L^{\phi}(m)$ and the weak Orlicz space $L_{w}^{\phi}(m)$, associated to an N-function ϕ and to m, were introduced in [2] and they generalize the Banach function spaces $L^{p}(m)$ and $L_{w}^{p}(m)$, respectively, of (equivalence classes of) scalar p-integrable and weakly p-integrable functions with respect to m. The description of the complex interpolation spaces $[X_0, X_1]_{[\theta]}$ and $[X_0, X_1]^{[\theta]}$ for couples (X_0, X_1) where X_0 and X_1 are spaces $L^{p}(m)$ or $L_{w}^{p}(m)$ was obtained in [3]. In such a case, the first method always gives an $L^{p}(m)$ -space and the second one yields an $L_{w}^{p}(m)$ space. More precisely, given $1 \leq p_0 \neq p_1 \leq \infty$, $0 < \theta < 1$ and $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ we have

$$\begin{split} [L^{p_0}_w(m), L^{p_1}(m)]_{[\theta]} &= \begin{bmatrix} L^{p_0}(m), L^{p_1}(m) \end{bmatrix}_{[\theta]} &= L^{p}(m), \\ [L^{p_0}_w(m), L^{p_1}_w(m)]_{[\theta]} &= L^{p}(m), \\ [L^{p_0}_w(m), L^{p_1}_w(m)]_{[\theta]} &= L^{p}(m), \\ [L^{p_0}_w(m), L^{p_1}(m)]^{[\theta]} &= L^{p}_w(m), \\ [L^{p_0}_w(m), L^{p_1}_w(m)]^{[\theta]} &= L^{p}_w(m), \\ [L^{p_0}_w(m), L^{p_1}_w(m)]^{[\theta]} &= L^{p}_w(m), \\ [L^{p_0}_w(m), L^{p_1}_w(m)]^{[\theta]} &= L^{p}_w(m). \end{split}$$

In this talk we are interested in studying if these interpolation formulae can be extended to the setting of Orlicz spaces with respect to a vector measure. It is based on a joint work with Ricardo del Campo, Antonio Fernández, Fernando Mayoral and Francisco Naranjo [1].

References

- R. Campo, A. Fernández, A. Manzano, F. Mayoral and F. Naranjo. Complex interpolation of Orlicz spaces with respect to a vector measure. Math. Nachr. 287 (2014), 23–31.
- [2] O. Delgado. Banach function subspaces of L¹ of a vector measure and related Orlicz spaces. Indag. Math. 15 (2004), 485–495.
- [3] A. Fernández, F. Mayoral, F. Naranjo and E. A. Sánchez-Pérez. Complex interpolation of spaces of integrable functions with respect to a vector measure. Collect. Math. 61 (2010), 241-252.